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Applications of Element Overlay Technique to the Problems of
Particulate Composite Materials
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Summary

In this paper, an extension of element overlay technique (s-FEM) [1] for particulate
composite material (see [2], for example) to perform three-dimensional elastic-plastic
analysis is presented. Mathematical formulations that alows us to generate meso-scale
analysis models for particulate composite materials is first presented. We adopt an
incremental formulation for elastic-plastic analysis. We then present a numerical example.

Introduction

In this paper, an element overlay technique is applied to the problems of particulate
composite materials. Element overlay technique was first present by Fish [3] as s-version
FEM (s-FEM) and then adopted by researchersto solve various problems [4,5,6].

In the applications of the element overlay technique, an analysis model is generated
by superposing two kinds of finite element models. Oneis called “global model” and the
other is “local model”, in this paper. Global model represents the structure or
representative volume as whole. Local model is for the localized structural details such as
distributed reinforcing particles/fibers, as shown in Fig. 1. When the shapes of the
distributed reinforcing particles/fibers are the same, we can use the same loca model
repeatedly. In other words, the local model is generated once and is superposed on the
global model repeatedly. Present authors applied such a technique to the two-dimensional
analyses of particulate composite materials [1].
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(a) Composite material (b) SSFEM mode
Fig. 1 Composite material and its ssFEM model.
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In this paper, the method presented in [1] is extended to deal with three-dimensional
elastic-plastic problems. Mathematical formulations are briefly presented first and some
issues in numerical treatments in three-dimensional elastic-plastic problems are described.

Mathematical Formulations
Second phase materias (particles or fibers) or voids distribute in matrix material, as
shown in Fig. 1. They are modeled by overlaid finite element meshes, whose regions are
denoted by W- (i =123,--,n). We call them as “Local Mesh Regions’. The global
structure is modeled by a coarse finite element mesh within W® . We call this region as

“Global Mesh Region”. In present work, the local mesh regions are contained within We .
Each local mesh region contains only one particle, fiver or void. We alow the local mesh
regionsto overlap each other.

We denote the displacement increments to be Du® and Dy (i =1,23,--,n) that are

based on the shape functions of the global and the loca meshes in W® and W~ . The
displacement functions are superposed when the global and the local mesh regions
overlap each other. For example, for a region, where the global and the local mesh

regions (W-, W9 and W-") overlap, we write the displacement increments Du; , as:
Dy, = Dy +DuP +Du% + DU 1)

At a point, where any local mesh regions do not overlap with the global mesh region, the
displacements u; equa uiG (y = uiG ). The continuities of the displacements are enforced
by letting the functions ut, ut?, ut3, .., u" be zero at the outer boundaries G- of

the local mesh regions W- . The statement of principle of virtual work in an incremental
formulation is written to be:

. Ddy;
gy

Du
X,

Dif ~dwP = (e DU D, dG® )

where the variations of the displacements are defined in the same manner as the

displacements. G° denotes the boundary where the tractions f, are prescribed. Eijie @€

the forth order tensor representing material’s stress-strain relationship (incremental J2-
flow dastic-plastic congtitutive law.). We then substitute the displacements and their
variations in the statement of principle of virtual work. After some algebraic
manipulations, we have:

DU e TDUS D Ddu® e, TDUC . _
DEP. dwe D& dWHa = &6 du; DE dG° 3
Q X kg, +qa=1QVL1 ; ik gy, Qe dui i ©)
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It is noted here that the left hand side of equation (4) equals zero, since the local mesh
regions do not intersect with the outer boundary of the structure. wW-P-ld
( p.g=123--n; ptq ) denote regions sheared by W and W (ie,
WP Ld WP cwha), When 0=W-P ¢ W9, the related terms in equation (4) disappear.
After the global and local regions are discretized by appropriate finite elements, we can
write amatrix formulation, as:

¢ K& KOL gG-l2 . yG-Ln u, DuC i ipx G
gKLl—G KW gl-L2 . gl-int DuLl' l 0 l
éKLZ G glzu gl2 gl LnulDJLZy Lo i, 5
e : : : - : 3: : I : : :
éKLn—G KLn—Ll KLn—L2 KLn TDuLnb T 0 b

where Du® and Du'P are the column vectors of unknown nodal displacements of the
global and the local meshes. Matrices K¢, K, K& k-9 arise from the

integrals in the left hand sides of equations (3) and (4). Since, K& P :(K Lp-G)r and

K Lp-La :(K La- '-p)T, the global stiffness matrix in the right hand side of equation (8) is
symmetric. However, the global stiffness matrix is not banded, unlike an ordinary finite

element method. Df © isthe consistent nodal force vector arising from the right hand side
of eguation (3).

Solution procedures

The coefficient matrix of equation (5) is symmetric and positive definite. However,
the coefficient matrix looses a band structure, as there are many off-diagonal components.
In such a case, use of iterative equation solver is advantageous over direct solvers. Thus,
we adopted an Incomplete Cholesky-decomposition-preconditioned conjugate gradient
(ICCG) method [7].

In present study, amid-point radial return algorithm (Atluri [8]) is employed for time
integration of stresses. Incrementa eastic-plastic analysis is carried out without iterative
solution procedures.
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Numerical treatmentsfor coupling stiffness matrix

When the coupling stiffness matrices such as K*" ¢, K19 etc. are evaluated,
numerical integrals are performed. For example, when the coupling stiffness matrix

kP - L9 petween the i-th element of local mesh region p and j-th element of local mesh
region g, computed, an integral as shown below is performed.

K LPi- L = G Lpi- Laj (x)(B Lpi )T DePg LU gL ©)

where B and B9 are the strain-displacement matrix for the elements, and D" is
the matrix representing the incremental tangent stiffness. w” is the volume of the ith

element of local mesh region p. Integration is performed based on W It is however
noted that the integration may be performed on w . aP-'9(x) is a scalar function
whose value is “1” or “0’. At a point, where W-" and WP overlaps, the value of
a'P-Ld(x) js“1”. Otherwise, a -P~ "9 (x) is “0". Therefore, the integrand of eg. (6) may

have some discontinuities within the volume W-" . An ordi nary Gauss quadrature would
fail to evaluate the integral accurately.
i

For example, as shown in Figure 2 (a), W-" and W-" partially overlap each other,

and the integration is performed based on W . First, W-" s divided into 8 sub-cells
Then each subdivided-cell is checked if it intersects with the faces of W™ . If a

subdivided-cell intersects with the faces of \/\)'pj , itisdivided into 8 sub-cellsagain. This
process is repeated until the smallest sub-cell becomes small enough (typically within 1%

of WP ). The processes of creating sub-cells are shown in Figs. 2 (b)~(d). Then, an
ordinary Gauss quadrature rule is applied in each subdivided-cell.

Numerical example

As an example problem, a block that contains 9 spherical particles is considered. The
volume fraction of voids/particlesis 6.51%. The model is shown in Figure 3.

In Figure 4, the distribution of equivalent stress normalized by yield stress for a
section intersecting four particles is depicted for the stage of elastic deformation. It is
seen that stress in the particles is higher than in matrix material. Particles are connected
through the region of high stress. The distributions of equivalent plastic strain and
equivalent stress are depicted in Figures 5 and 6, when the block is subject to 2% of
tensile strain. Plastic strain is accumulated at the top and bottom of the particles, as seen
in Figure 5. In Figure 6, the distribution of equivalent stress normalized by yield stressis
depicted the regions of high stress running vertically and connect the particles. Figures 5
and 6 clearly indicate the effects of particle interaction.
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(d)

Figure 2 Elements W-P' and W-P partially overlapping each other and the generation of
subdivisions for numerical integration [(a) Elements W-P' and WP partially overlapping,
(b) Element W-P' divided by eight sub-cells, (c) Sub-cells of W-P' that do not overlap
with element WP deleted, (d) Each sub-cellsof W-P' is divided into eight sub-cells].

: ~—
Uz prescribes i,

/\ 7 prescri Master Local Mesh '..".‘.“.‘"

L (1007 nodes, 828 alements) AU -y.!—i'A
P S Sy
IS

g e Ny

L o . ) AR
v Random $| __—T@iePeerr0m | , !l !i
N it distribution ‘2‘ ."(‘ o B 11000 ) L ] )

1 _v| L | ~uz=0 hole/particle § e %

X & . Parscin 1 E

5Sx5x5 Global Mesh Egurvalent PI. Strain (7%)

Figure 3 Nine spherical void/particle problem for elastic-plastic analysis.

Concluding Remarks

In this paper, the element overlay technique for the meso-mechanics anaysis of
particulate composite material is presented. The formulation alows to perform
incremental nonlinear analysis. The interaction between reinforcing particles can be
investigated using present methodol ogy .
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Figure 4 Distributions of equivalent stress ~ Figure 5 Distribution of equivalent plastic
before any plastic deformation takes place.  strain for the problem of nine spherical
particles.
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Figure 6 Distribution of equivalent stress strain after some plastic deformation, for
the problem of nine spherical voids/particles.
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