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Summary 
 

Understanding the stress fields and energetics of dislocations is of fundamental 
importance towards comprehending material behaviour at microscopic scale. In this 
work, a simple sessile edge dislocation is simulated using Finite Element Method 
(FEM) by feeding in the appropriate stress free Eshelby misfit strain in the model 
corresponding to the introduction of an extra plane of atoms. The results of the 
simulation are compared with that of the standard equations of elasticity theory of 
dislocations and the applicability of the results, near the core of the dislocation, is 
demonstrated in the light of the published experimental results. It is shown that along 
special zones of interest, where the standard theory is expected to be valid, the model 
has an excellent match with the theoretical results up to a distance of about 5 Å. 
Important features deducible from the experimental results, like asymmetry due to the 
compressive and the tensile stress fields are also captured in the current model. It is 
seen that the results of the simulation can provide an accurate prediction of the stress 
fields of a dislocation much closer to the core of the dislocation than the standard 
theory. The utility of the Finite Element Method at length-scales of a few nanometers 
is also demonstrated. The simulated edge dislocation can be used to study interaction 
between dislocations and also in conjunction with other simulated systems like 
epitaxial thin films, precipitates in metals etc; hence forms an important step towards 
building numerical models for dislocation dynamics. 
 

Introduction 
 

The study of stress fields and energetics of dislocations is of great importance in 
the understanding of material behaviour at microscopic scale. For instance, the study 
of dislocations in thin films is useful in comprehending the properties of devices 
affected by dislocations [1]. The recent work of Hytch et al [2] has made it possible to 
compare analytical models of displacement fields of a dislocation with experimental 
results at a distance of few nanometers with high accuracy. Benabbas et al [3] had 
earlier demonstrated the utility of Finite Element Method (FEM) for highly strained 
materials in nanometer length-scale. In this work an edge dislocation is modeled using 
FEM. The power of the model is demonstrated by comparing the FEM results with 
published experimental results as well as theoretical ones and bring out certain 
interesting observations.  

 
Considerable literature is available on various aspects of dislocations, including 

their stress fields and energetics [4-6]. The energy of an edge dislocation is [6]: 
  

Edl =    Gb2         [2+ln (γ0 /b)]                                   (1)                               
          4π (1-υ) 
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Fig. 1. Plot of σx (contours in Gpa) on the introduction of an edge dislocation (a) 
FEM simulated values (b) plot of the theoretical equation 
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Fig.2. Comparison of the theoretical and FEM plots of σx values along the y-axis 
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Where, Edl is the energy per unit length of the dislocation, G is the shear modulus, 
b is the Burgers vector, υ is the Poisson’s ratio and γ0 is the size of the domain which 
is usually taken ~100b. The σx component of the stress of an edge dislocation with the 
dislocation line along z-axis and the extra half plane along negative-y axis is given by 
[6]: 
 

   σx =     Gb            y(3x2 +y2)                                                                        (2) 
                  2π (1-υ)        (x2 +y2)2     
 

Finite Element Method 
 

To illustrate the Finite Element Method and to compare the results with available 
analytical results, the introduction of a simple edge dislocation with Burgers vector 
along [100] is considered. The initial mesh configuration consists of bi-linear 
quadrilateral elements with material properties corresponding to Si as an illustrative 
case. For defining the boundary conditions, using the symmetry of the domain, half the 
length of the system is considered and plane strain condition is assumed. Anisotropic 
conditions are incorporated by feeding the three independent moduli of the cubic 
lattice as input. The edge dislocation is modeled by feeding the strain (Stress free 
Eshelby strain [7]) corresponding to the introduction of an extra plane of atoms. This 
strain is: 
 

εT = b / (a + b) ≈1/2                                                           (3) 
        

Where, εT is the strain imposed on a column of elements representing the extra 
half plane of atoms and 'a' is the spacing of atoms along the [100] direction. In this 
simplified illustration 'b' is taken to be equal to 'a'. It is to be noted that the assumed 
direction of the Burgers vector is for a simplified illustration although the energetically 
preferred dislocation in Si is along the close packed [110] direction on the (111) plane. 

 
The model is implemented using a large deformation algorithm developed by 

Ramakrishnan et al [8] which can handle large rotations as well as strains accurately 
that was essentially developed for metal forming applications involving very large 
deformation. The energy per unit length of the system, on the introduction of a 
dislocation, obtained from the simulation is 6.72x10-9 J/m. The corresponding value 
obtained from equation (1) is 8.84x10-9 J/m. It is seen that the simulated result is in 
reasonable agreement with the one calculated from the theory. The marginal difference 
in the values could be due to the difference in the core energy values and the shape of 
the domain in the simulation. To reduce the end effects, a geometry that is about ten 
times larger than the zone of interest was considered. 
 

Results and Discussion 
  

Fig. 1a shows the plot of σx on the introduction of an FEM simulated edge 
dislocation and Fig. 1b shows the plot of the theoretical equation [4]. A close 
correspondence is seen in the shape as well as the stress values of the contours 
between the analytical and the simulated plots. Similarly a good fit is seen between the 
theoretical and simulated plots of σy  as well. 
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In order to make a critical comparison of the current model with that of the 

experimental results [2] the following important points are noted from their paper: i) 
the comparison of numerical results with theory that is developed for the sinusoidal 
displacement component at a distance of 74 Å ii) experimental results showing curved 
displacement contour lines which is not captured by the theoretical result. Curved lines 
imply a top-down asymmetry in the displacement field, which in turn is due to the 
compressive and tensile stress fields of the dislocation as in Fig 1a. 
 

Further, to compare the current model with the theory and with that of the 
experimental results [2] of the plot of σx along y-axis are considered in Fig.2. To 
interpret these plots the material rotation field [9] around the simulated dislocation is 
plotted in (Fig.3) which provides a better idea about the asymmetry. It is seen from 
Fig.2 that there is an excellent match between the simulated and theoretical results of 
σx except upto a distance of about 5 Å .On the other hand, a comparison of the 
theoretical values, which is zero along x-axis, with the model for σx shows a matching 
to 0.13 GPa at a distance of 75 Å starting with a difference of 4.5 GPa at a distance of 
3.75 Å. This discrepancy can be understood by taking into account the material 
rotation field around a dislocation (Fig.3). Along the y-axis the material rotation is 
zero, which can be easily deduced from symmetry considerations and hence the 
standard theory (which does not take into account material rotation) is in excellent 
match with the simulated result. On the other hand along the x-axis there is significant 
material rotation near the core of dislocation, leading to deviation from the theory. 
This aspect is also is reflected in the curved displacement contours in the experimental 
results [2]. Another point, which can be noted from the comparison, is that the 
displacement contours of the experimental results are highly curved to a distance of 5 
Å from the centre of the dislocation. This feature is also captured in the plot of the 
FEM calculated  material rotation along the x-axis (Fig.4), wherein, the maximum 
value of the material rotation ( ~7 degrees) occurs at about 6 Å. It is important to point 
out that the small strain theory of elasticity is not valid in the core region of the 
dislocation. Hytch et al [2] have made numerical comparisons of the sinusoidal 
component of the displacement field with the theoretical expressions at a distance of 
75 Å to an accuracy of 0.03 Å. Their choice of this distance can be better understood 
in the light of the above discussions. 
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Fig.3.Material rotation in degrees contours in the symmetrical half of the 
domain around an FEM simulated edge dislocation 
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Fig.4.FEM calculated material rotation values for an edge dislocation along the X 
axis showing a peak value of 7˚ at a distance of about 6 Å. 
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In general, this simulated dislocation model can be used in various other-systems 

with complexity, like precipitates in metals, epitaxial superlattices and epitaxial 
islands. Calculations like critical thickness for dislocation nucleation in strained layer 
systems can also be performed. One such work for predicting the critical thickness of 
epitaxially built thin film is presented in [11] 
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