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Summary 

For a constant-gradient elastic isotropic medium, i.e. a medium with linear variation 
of wave velocity, the rays from a point source are known to be circular. The associated 
wave fronts are circular cylinders or spheres in two or three-dimensions, respectively. 
This fact allowed us to construct analytical approximations for the corresponding Green’s 
functions. In 2D the elementary impulsive sources are unit line forces per unit length 
(anti-plane SH line source and the in-plane P–SV line sources, respectively). In 3D the 
sources are vertical and horizontal unit point forces. The derivation of the analytical 
approximations starts with a generalization of the homogeneous Green’s functions and 
relies on the asymptotic ray theory to establish the travel times and the geometrical 
spreading factors. Our approximation accounts for both near-source effects and low 
frequencies. The adequate behavior of our expressions in 3D is tested by comparing them 
with results from an explicit fourth order finite difference scheme. 

Introduction 

Geological and topographic local conditions can induce amplifications either in 
seismic ground motion or in the shaking duration or both. For scientific and practical 
reasons it is of interest to assess the significance of such increments. During the last 
decades site effects have been studied both theoretically and experimentally. In fact, there 
are regions where the data available do allow us to forecast, within a reasonable range, 
the dynamic characteristics of the soil, but when the coverage is not enough or the 
information from the seismograms do not cover all possible source scenarios, the only 
available tool is numerical simulation. As computational power grows and numerical 
methods improve our models are trustworthy. The models of San Bernardino [1] and 
Kanto Basin [2], just to mention some works, show large differences between two- and 
three-dimensional analyses. Besides, field prospecting tests show increments of the 
stiffness as the confinement grows, which is strongly related to depth. Therefore, even in 
a homogeneous soil we should consider a variation in the wave velocities as the depth 
increases. In some circumstances it is enough assume a set of plane layers. In this paper 
we extend the results of previous work in 2D [3] and give analytical expressions of the 
3D Green’s functions for an isotropic elastic space with linear variation in velocities. 
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Formulation of Problem and 3D Green´s Functions 

The elastic domain of interest is defined by hz −=−> γ/1 , in which wave velocities 
and density are given by 
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where c = wave speed (α for P or β  for S), =ρ density, ( ) 0)( =−=− hh βα  and 
0≥n . The zero subscript refers to a property at source level. This is a constant-gradient 

elastic isotropic medium in which the rays from a point source are known to be circular. 
The associated wave fronts are either circular cylinders or spheres in two or three-
dimensions, respectively. For a point source at (0, 0, z0) the wave travel time to a point (x, 
y, z) is given by 
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0 )( yyxxrh −+−= , and  c(0) = wave speed at z = 0.  The wave fronts are spheres 

of radius Rw, (see Fig. 1) whose equation is (see [4]) 
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where )(2/))0(sinh()( 210 hzRRchzRw +=+= τγ  =radius of the wave front either 
for a known travel time or at a given point.  

The expression for the displacement, in frequency is given by ray theory [5] as 
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where =ω angular frequency, τ =travel time, xr = reference position in the ray 
considered and ℵ (x)= geometrical spreading factor. The displacement u and the velocity 
c represent both P or S waves. 
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Figure 1.- Medium considered. Drawn the wave fronts and rays. 

Cerveny and Psencik [6] gave the methodology to get ℵ(x). Following their 
equations (5.5), (5.23), (5.25) and (6.5) of that paper, we obtain  
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for a point source. Thus, considering the Eqs. (1) to (2), (5) and (6) we obtain  
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To get the approximate fundamental solutions for a point source we follow a similar 
procedure as described in [3]. We know that the exact radial and tangential displacements 
for a unit point force in a homogeneous full space are 
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where the Stokes’s functions are 
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In these equations r is the distance between the receiver and the source, θ  is the 
angle between the directions of the force and the source-receiver line and ατ , βτ  are the 
travel times for P and S waves. We propose a generalization of the displacement due to a 
unit vertical point force as  
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‘radial’ and ‘angular’ components which are the local normal and tangents to wave front. 

The expressions for a horizontal force along the x axis are 
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The expressions are correct for high frequency and far field. An inspection of (11)-
(14) shows that our proposal also gives the exact solution for near-source field. In order 
to give general expressions in Cartesian coordinates for the approximate Green’s function 
let’s define the longitudinal vector li (θ,φ), which is tangent to the ray and forms at each 
point along the ray an angleθ with z axis (φ  is the azimuthal angle, constant along one 
given ray, hrxx /)(cos 0−=φ  and hryy /)(sin 0−=φ ), and the transverse components 

)(φih  and ),( φθiv , polarized in the horizontal and vertical planes, respectively. They are 
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1 φθ cossin  φsin−  φθ coscos  

2 φθ sinsin  φcos  φθ sincos  

3 θcos  0 θsin−  

 Therefore, we can write  
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which exhibits the longitudinal and the transverse components. It also shows that 
asymptotically the Stokes’ factors lead to the P, SH and SV components, respectively. 

In order to verify our approximation we calculated several examples. We show one 
of them. In this model (Fig. 2) ( ) sm /2000 =α , ( ) sm /1000 =β , ( ) 3/10 mT=ρ and h= 
1000 m. The stations are grouped in two sets (A y B) and their positions are shown in 
Fig. (2). The vertical force is a triangular pulse with tp=0.6 and ts=0.31 s. We plot our 
analytical results versus the numerical solutions obtained with a fourth order FDM using 
a mesh of 700 x 700 with intervals of 10 m. The comparison, presented in Fig. (3), shows 
that the agreement is excellent and that the proposed formulae give the right amplitude 
and travel time for both waves P and S waves. 

 
Figure 2.- Properties in a heterogeneous  medium a) velocities ( ) sm /2000 =α , ( ) sm /1000 =β , 

( ) 3/10 mT=ρ and h= 1000 m, b) and c) rays and wave fronts every 3 s. Set of stations A and B in thick line. 

Conclusions 

A 3D Green’s function set was presented for an elastic isotropic and heterogeneous 
medium. We showed a good agreement of our expressions with a FDM calculation.  The 
advantage of our anzats is its ease in structure and computation. The formulae are regular 
in all the domain and the singularities in the source can be handled with conventional 
methods. A definition of a norm to establish the range of validity is a matter of further 
scrutiny and will be discussed elsewhere. These Green’s functions extend considerably 
the realm of BEM. In fact, with the same computational complexity as in a homogeneous 
case we can solve a heterogeneous medium. 
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Figure 3.- a) and b) Displacements in a heterogeneous medium for a vertical force in the receptors sets 

A and B. Material properties and positions of both source and receivers are shown in Fig. 2. In continuous 
line the exact analytical solution and in dotted line the solution obtained with a fourth order FDM. 
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