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Summary 

In this paper, a locking-free meshless local Petrov-Galerkin (MLPG) formulation is 
developed for both thick and thin plate. Shear locking is eliminated by changing two 
dependent variables in the governing equations. The concept of three-dimensional solid 
plate is used in the current formulation. Numerical examples at both thin plate limit and 
thick plate limit are analyzed. 

 
Introduction 

Meshless local Petrov-Galerkin (MLPG) method is a truly meshless method, which 
requires no element or background cell in either interpolation or integration [1]. It was 
applied to the three-dimensional plate analysis in another paper in this conference [2], 
where promising results for thick plate were obtained. However, the drawback of shear 
locking appears in the case of thin plates of thickness to span ratio less than 1/20. In this 
paper, a locking-free formulation is developed and extends the analysis to both thick and 
thin plates. 
 

The concept of a locking-free weak formulation was introduced by Atluri in 1992 [3]. 
By using this concept, the dependent variables of upper-lower nodal displacements in the 
thick plate formulation [2] are changed to mid-plane displacements and shear strain 
components in order to remove field inconsistency. The corresponding locking-free local 
symmetric weak form is constructed over cylindrical shaped local sub-domains 
surrounding each upper-lower node set. Moving least square (MLS) approximation is 
adopted in the interpolation of field variables in the in-plane direction. In order to study 
the accuracy of the proposed method, numerical examples are carried out at both the thin 
plate limit and thick plate limit.    
 

 MLPG formulation for 3-D plate 

The 3-D plate concept retains the kinematics of three-dimensional continuum in the 
flat plate structures. The strong form governing equations are the linear momentum 
balance equations of 3-D solid 
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0, =+ ijij bσ .        (1) 
 

The plate is discretized by the sets of two nodes on the upper and lower surfaces 
respectively. Instead of writing the global weak form for the governing equations, the 
MLPG method constructs the weak-form over local sub-domains, which are taken as 
cylinders standing between upper, lower surface around each node set. (Figure 1)    

 
 

Figure 1 Nodal location and Local Sub-domain 

The local weak form is 
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where iu  is the trial function describing the displacement field, sΩ  is the local sub-
domain, suΓ  is the part of the boundary of the local sub-domain with the prescribed 
displacement iu , and α  denotes a penalty parameter. iv  is the linear test function  
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Integration by parts and rearrange, a set of two governing equations for each local sub-
domain can be derived.  
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where it  represents the surface traction, it  is its prescribed values, ib  is the body force. 
Please refer to Sorić et al [2] for detailed derivation. 
 

Lock free Formulation 
 

In order to reveal the locking phenomenon in the solid plate formulation, a local sub-
domain with no crossing with boundary, no body force and no external force is examined. 
With these assumptions, equation 4a simply becomes the integration of surface traction 
over the side wall of a cylinder.  
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where R is the radius of the cylindrical local sub-domain, h is the thickness of the plate, 

ijklE  is tensor of elastic constants. If a linear interpolation is used through the thickness, 
plate deformation can be described by the displacement components as 
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where 0αu  and 30u  are the mid-surface displacement, while 1αu and 31u describe the 
rotations. Substitute (6) into (5) and integrate through the thickness, we have 
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It is obvious that the term 
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x
u  produces spurious constraints at the thin plate limit, 

which give rise to overly stiff solution. In order to remove the above locking 
phenomenon, we assume 
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Substitute (8) into (6), we have  
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Hence, the field variables 0αu , 30u , 1αu , 31u are changed to 0αu , 30u , αγ , 31u  and 

the field inconsistency is removed from the formulation. By applying the moving least 
square approximation, the displacement is discretized to 
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where ),( yxiφ is the shape function of the MLS approximation for the ith node, 
derived by employing the quadratic polynomial basis and 5th order spline of the 
weight function. 0ˆ αiu , 30ˆiu , αγ iˆ , 31ˆiu  are the fictitious nodal values, and n is the total 
number of node sets in the domain of influence. Stresses can be calculated by taking the 
derivative of (10) and multiplying the constitutive matrix. Surface tractions can then be 
calculated by multiplying the normal with the stresses. Therefore, the discretized 
governing equations for each local sub-domain have the final form of 
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where iB  is the strain-displacement matrix obtained by taking the derivatives of the 
shape functions, D is the three-dimensional constitutive matrix, and N is the matrix 
describing the outward normal on the surface of local sub-domain. For each local sub-
domain, six equations in the form of (11) are generated as well as the six fictitious 
unknowns. The actual upper-lower nodal displacements are obtained from the solved 
fictitious values using equation (10). 
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Numerical Example 

Simply supported square plates under uniformly distributed load are analyzed. A 
uniform thickness value of 1.0 is used for all the cases, while the span of the plate varies. 
The schematic of the plates is list in Figure 2. Because of the symmetry of the problem, 
only a quarter of the plate is modeled. Uniform nodal distribution of 9 by 9 nodes is used 
on both the upper plate surface and the lower plate surface. Isotropic material property of 

610092.1 ×=E , 0=ν  is used for all the cases.  

 
Figure 2 Simply supported plate under uniformly distributed load 

At the thin plate limit, eight plates with span to thickness ratio between 20 and 1000 
are analyzed. The maximum deflections normalized to the theoretical solution [4] are 
plotted in Figure 3. At the thick plate limit, six plates with thickness to span ratio between 
5 and 10 are analyzed. Finite element analysis is carried out for the thick plate models 
due to the absence of theoretical solution. The maximum deflections from both FEM and 
MLPG are plotted in Figure 4. For both thick plate and thin plate, the locking-free MLPG 
formulation obtains accurate results.  
   

0.00

0.20

0.40

0.60

0.80

1.00

1.20

10 100 1000 10000

span to thickness ratio

w
/w

(e
xa

ct
)

 
Figure 3 Maximum displacements for thin plates  
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Conclusion 

A locking-free MLPG formulation for plate analysis employing a three-dimensional 
solid concept is presented in this paper. By changing the dependent variables, shear 
locking is completely eliminated. Numerical examples of simply-supported square plates 
under uniformly distributed load are carried out at both the thin plate limit and thick plate 
limit. Compared with analytical solution or finite element analysis, the current 
methodology shows accurate results for both thick and thin plates.  
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Figure 4 Maximum displacements for thick plates  
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