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Summary 

In the present work a plane strain problem of the equilibrium theory of elastic 
materials with voids is studied. The problem of a rigid inclusion in an infinite body is 
investigated. The solution generalize analogous results in classical elasticity. 

Introduction 
This paper concerns plane problems in the equilibrium theory of linear elastic 

materials with voids. This theory was formulated by Cowin and Nunziato [1] as a 
linearization of a nonlinear theory for elastic porous bodies. The linear theory deals with 
small changes from a reference configuration of porous body. The independent kinematic 
variables are the displacement field iu  and the change in volume fraction ψ.  

The intended application of the theory is to behavior of solid materials with small, 
distributed voids as geological materials and biological materials.  

In this paper we study the problem of a rigid inclusion in an infinite body which is 
uniformly stretched along one axis. This problem is of great practical and technological 
importance and in the context of classical elasticity has been a subject of various studies 
(see, e.g. [2,3]). In Section 2 we present the basic equations of the equilibrium theory of 
elastic materials with voids and derive the equations of the plane strain problem for 
homogeneous and isotropic bodies. Section 3 concerns the problem of a cylindrical rigid 
inclusion. The solution is presented in a closed form and generalize analogous results in 
classical elasticity.  

Basic Equations 

Throughout this section B  is a regular region of three-dimensional Euclidean space. 
We let B∂  denote the boundary of B  and designate by n  the outward unit normal of 

B∂ . We assume that the region B  is occupied by a linearly elastic material with voids. 
The body is referred to a system of rectangular Cartesian axes iOx . Let u  be the 
displacement field over B . The linear strain measure ije  is given by  

 
1
2ij i j j ie u u 

 , , 
= + .                (1) 

Let ijt  be the stress tensor and let ih  be the equilibrated stress vector. The 
components of surface traction it  and the equilibrated stress h  are given by 
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      i ji j i it t n h h n= , = ,           (2) 

respectively. The equilibrium equations are  
 0      0ji j i i it f h g l, ,+ = , − + = ,         (3) 

where if  are the components of body force, g  is the intrinsic equilibrated body force 
and l  is the extrinsic equilibrated body force.  

In the case of centrosymmetric isotropic material the constitutive equations are  
 2           ij rr ij ij ij i i rrt e e h g eλ δ µ βψδ αψ β ζψ= + + , = , , = + ,      (4) 

where ψ  is the volume fraction function, ijδ  is Kronecker’s delta, and λ,  µ,  β,  α  and 
ζ  are constitutive coefficients. We restrict our attention to homogeneous materials so 
that the constitutive coefficients are constants. We assume that the internal energy density 
is a positive definite form. This assumption implies that [1]  
 ( ) 20  0    0  2 3 0    2 3 3bµ α ζ µ λ µ λ ζ> , > , > , + > , + > .                              (5) 

We assume that the region B  refers to a right cylinder with the open cross section Σ  
and the smooth lateral boundary Π.  The rectangular Cartesian coordinate frame is 
supposed to be chosen in such a way that the 3x axis−  is parallel to the generators of 
B .We denote by L  the boundary of Σ.  
In what follows we are interested in a plane strain problem with the displacement vector 
and the volume fraction function being specified in cylindrical coordinates ( )r zθ, ,  as 
follows:  
 ( ) ( ) ( ) ( )      0     r zu u r u v r u r rθθ θ ψ ϕ θ θ= , , = , , = , = , , , ∈Θ.                   (6) 

The geometrical equations (1) become  

 
1 1 1 1    

2rr r
u v u vu v
r r r r rθθ θε ε ε

θ θ
∂ ∂ ∂ ∂   = , = + , = + − .   ∂ ∂ ∂ ∂   

                            (7) 

The equilibrium equations (2) take the form  

( )1 1 0,rrr
rrr r r

θ
θθ

ττ τ τ
θ

∂∂
+ + − =

∂ ∂
 

                                                  
( )

1 2 0,

1 1 0.

r
r

r

r r r

r
r r r

θ θθ
θ

θ

τ τ
τ

θ
χ

χ γ
θ

∂ ∂
+ + =

∂ ∂
∂∂

+ − =
∂ ∂

                                                        (8) 

The constitutive equations (4) can be written in the form  

          
( ) ( )

( )

2    2    2
1 1 1   ,    .

rr rr rr r r

r
vru

r r r r r

θθ θθ θθ θ θ

θ

τ λ µ ε λε βϕ τ λε λ µ ε βϕ τ µε
ϕ ϕχ α χ α γ β ζϕ

θ θ

= + + + , = + + + , = ,

∂ ∂ ∂ ∂ = , = = + + ∂ ∂ ∂ ∂ 

        (9) 

The plane strain problem consists in the finding of the functions u,  v  and ψ  on Σ , 
which satisfy the Eqs.(7)-(9) and the boundary conditions. 
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The problem of a rigid inclusion 

In this section we study the problem of a rigid cylindrical inclusion in an infinite 
body which is uniformly stretched along the axis 1Ox .  We assume that the elastic body 
occupies the region ( ) 3 2 2 2

1 2 3 1 2B x x x R x x a 
 
 

= , , ∈ : + > ,  where a  is a positive constant.  
We assume that the region ( ) 3 2 2 2

1 2 3 1 2x x x R x x a 
 
 

, , ∈ : + <  is occupied by a rigid body. We 
consider the following boundary conditions:  
              0     0     0  onru u r aθ ϕ= , = , = , = ,        (10) 
and the conditions at infinity  

( ) ( )1 1 11 cos 2    1 cos 2    sin 2      0
2 2 2rr r r rP P Pθθ θ θ θτ θ τ θ τ τ θ χ χ= + , = − , = = − , = =  (11) 

where P  is a given constant. the body B  is in a state of plane strain parallel to the plane 
1 2x Ox  in the absents of body loads. We seek the solution in the form  

               ( ) ( ) ( ) ( ) ( )cos 2    sin 2    cos 2 ,u F r U r v V r G r rθ θ ϕ θ= + , = , = + Φ                 (12) 

where F,  G,  U ,  V  and Φ  are function only on r.  It follows from (7), (12) and (9) that  

      ( ) ( ) ( )1 12 2 2 cos 2 ,rr F F G U U V
r r

τ λ µ λ β λ µ λ β θ′ ′ = + + + + + + + + Φ  
 

( ) ( )( )1 12 2 2 cos 2F F G U U V
r rθθτ λ λ µ β λ λ µ β θ′ ′ = + + + + + + + + Φ  

, 

( ) ( )

( )

1 22 sin 2 ,    cos 2    sin 2 ,

1 1 2 cos2 ,
2

r r rV U V G
r r

F F G U U V
r

θ θ θτ τ µ µ θ χ α θ χ α θ

γ β ζ β ζ θ

′ ′ ′

′ ′

 = = − + = +Φ , = −  
    = + + + + + + Φ        

  (13) 

where the prime denote derivation respect to r .If we substitute (13) in the equilibrium 
equations (8), we obtain the following equations:  

( ) 2

1 1 1 12 0,    0,F F F G G G G F F
r r r r

ζλ µ β α β
α

′′ ′ ′ ′′ ′ ′     + + − + = + − − + =     
     

 

( ) ( ) ( ) ( )
( ) ( ) ( )

( )

2 2

2

2 2 2

2 6 2 3 0,

2 2 2 3 4 9 2 0,

4 2 0

r U rU rV r U V

r V rV rU U V r

r r r r U r U V

λ µ µ λ β λ µ λ µ

µ λ µ λ µ λ µ β

ζα β β
α

′′ ′ ′ 
 
 

′′ ′ ′ 
 
 

′′ ′ ′

+ + + + + Φ − + − + =

+ − + − + − + − Φ =

 Φ + Φ − Φ − Φ − − + = . 
 

                  (14) 

The first equation of (14) implies that  

 
( ) 1

1
2

F F G C
r

β
µ λ

′ + + =
+

,        (15) 
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where 1C is an arbitrary constant. In view of (15), the second equation of (14) can be 
written in the form  

 2
1

1G G G C
r

βξ
α

′′ ′+ − = ,      (16) 

where  

 
2

2 1
2

βξ ζ
α λ µ
 

= − . + 
               (17) 

It follows from (5) that 2 0ξ > .  Since the function G  must be finite at infinity, the 
solution of Eq. (16) is  

 ( )1 0 12G A K r Cβξ
ξ α

= − .                (18) 

where nI  and nK  are the modified Bessel functions of order n , 1A  is an arbitrary 
constant. It follows from (18) and (15) that  

 
( ) ( )1

1 2 12

1
2 2

AF C r C K r
r

βζ ξ
ξ α ξ λ µ

= + + ,
+

       (19) 

where 2C  is an arbitrary constant. Now we introduce the independent variable t  through 
the relation lnt r= ,  and denote D d dt= .  Then, Eqs.(14) 3 4,  can be written in the form  

 
( ) ( ) ( )

( ) ( ) ( )

2
1 1 1 2

2
1 1 1 1 2

1 4 2 1 1

1 1 4 2

t

t

D c U c D c V e c D

c D c U c D c V e c

   
     

  
     

− + + − − + = − Φ,

− + + + − + = Φ,
                 (20) 

where  

 1 2   
2 2

c cµ β
λ µ λ µ

= , = .
+ +

         (21) 

The general solution of the homogeneous system (20) which corresponds to a finite stress 
field at infinity is given by  
 3 3

0 1 2 3 0 1 1 2 3    t t t t t tU b e B e B e V c B e B e B e− − − −= + + , = − + − ,                        (22) 

where 1B ,  2B  and 3B  are arbitrary constants. Particular solution of the system (20) can 
be seen to be  

    3 3
2 1 2 2 1 2

1 1    
2 2

t t t tU c e S e S V c e S e S∗ − ∗ −   
   
   

= − + , = − ,                             (23) 

where  
                     ( ) ( ) ( ) ( )4

1 2    s

t t
S t s ds S t e s ds= Φ , = Φ .∫ ∫                                 (24) 

With the help of (22) and (23) we obtain  

 ( ) ( )1 3 1 3 3
1 2 3 2

1
2 r r

U B r B r B r c r x x dx r x x dx

− − − −





= + + − Φ + Φ ,


∫ ∫  
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 ( ) ( )1 3 1 3 3
1 1 2 3 2

1
2 r r

V c B r B r B r c r x x dx r x x dx

− − − −





= − + − + Φ − Φ .


∫ ∫   (25) 

If we substitute U  and V  from (25) we obtain the equation  

 2 2 2 1 124 c Br r r βξ
α

′′ ′  
 
 

Φ + Φ − + Φ = − .     (26) 

The solution of Eq.(26) which generate finite stresses for r →∞  are given by  

 ( ) 2
2 2 1 12

2A K r c B rξ β
ξ α

−Φ = + ,        (27) 

where 2A  is an arbitrary constant. If we substitute (27) into relations (25) we obtain  

           
( ) ( )

( ) ( )

1 2 3 2 2 3 13

2 1 2 3 2 2 3 13

1 1 1
2

1 1 1
2

U B B B r c A K r K r
r r

V c dB B B r c A K r K r
r r

ξ ξ
ξ

ξ ξ
ξ

= + + +  − , 

= − + − +  − , 

     (28) 

where 2d ζ αξ= .We introduce the notations  

 
( )
( ) ( )

2
2

1 1 2 1 21 2 2 ,           2 ,q c d q c d Q K
ζ λ µ β

ζ λ µ β
ζ λ µ β

+ −
= − , = − = , = + −

+ −
       (29) 

It follows from (9),(18),(19) and (27)-(29) that  

( )

( ) ( ) }
( ) ( )

( ) ( ) ( ) }

2 2 4 1
1 2 1 2 3 2 3 32

2 0

2 4
1 2 2 1 0 1 2 32

1
2 3 2 0 3

12 2 2 3 6
2 4

       cos 2

12 2 2 3
2
1        3 6 cos 2

4

rr
Kt c r c Qr B r B B c A r K r

K r K r

Kt c r c c A K r K r r B B
r

c A K r K r r K r

θθ

µ µ ξ
αξ ξ

ξ ξ ξ ξ θ

µ µ ξ ξ µ
αξ ξ

ξ ξ ξ ξ ξ ξ θ
ξ

− − − −



− −



−

= − − + − + −

+  ,

 
= + + + + − + 

 

 + − , 

 

( ) ( )2 4 1
1 2 3 2 3 3 1

12 3 3 sin 2
2 2r
Qt B r r B B c A r K r K rθ µ ξ ξ θ

ξ


− − −






= − − − −  +  , 


 

( ) { ( ) ( ) }1 3
1 1 3 1 1 1 1 22 4 cos 2rh A K r A K r r K r B r c βαξ ξ α ξ ξ ξ θ

ξ
− −= − −  + + ,   

                          ( )1 3
3 3 1 1 22 4 sin 2h r A K r B r cθ

βα ξ θ
ξ

− − 
= − + . 

 
                                     (30) 

On the basis of (30) the conditions at infinity (11) reduce to  

                                  
2

3 1
1    

4
B P C P

K
αξ

µ
= , = .                                              (31) 
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We note that the restrictions (5) imply that 0K > .  With help of (18), (19),(27) and (28) 
we find that the conditions (6) can be written in the form  

 

( ) ( ) ( )

( ) ( )

2
1 12

1 0 2 1 1 2 1 1 22 2

4 4
2 21 2 1 2

1 2 2 1 23 3

2    
2

    
4 4

c aaA P K a C P A K a A c B K a
K K a
c c a c c aPa Paa L a B B c da L a B B

a a

β ζξ ξ β ξ
ξ αξ

β βξ ξ
ξ µ ξ µ

− −
=   , = − − , = −   ,   

   
− + = − , − − + = ,   

   

(32) 

where  
           ( ) ( ) ( ) ( ) 1

3 1 2L z K z K z K z
−

=  +    .                                                      (33) 

From (32) we obtain  

 
( ) ( ) ( ) ( )

2 2
2 1 2

1 2 2 3
2 2

2   1
2 1 4 1

c c aPa PaB B c d a L a
c d c d a

β ξ
µ µ ξ

 
= − , = − − . + +  

  (34) 

The solution of the problem has the form (12) where the constants iA Bα ,  and Cα  are 
given by (31), (32) and (34).The stress tensor and microstress vector can be determined 
from the relations (30).In particular, the values of rrt  and rt θ  on the boundary of the 
inclusion have the form  

( )
( ) ( ) ( )

( )
( )
( )

2
1 1 2 122

2 3 3
0 2 2

2
1 2 12

2 2 3
2 2

421 1 2 1 2 cos 2
2 1

21 5 sin 2
1 2 2

rr

r

K a c c K ac Pat P P Q c d a
K a K a c d a K a

c c K aPat Q c d a
c d a K aθ

ξ β ξβµ ζ θ
ξζ ξ αξ ξ

β ξ
θ

αξ ξ
−

   
= + + − − + − − ,   +      

  =− − + − − .  +    

 (35) 

The problem of a rigid inclusion in an elastic medium has been investigated also in the 
context of non-classical theories (see e.g. [4-5]). 
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