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Summary

This paper describes the application of the Trefftz-type boundary element
method to the sensitivity analysis of the boundary value problem of Poisson equa-
tion. The unknown function is approximated with the T-complete functions of the
Laplace equation and the particular solutions related to the inhomogeneous term of
the Poisson equation. Direct differentiation of the function leads to the sensitivities.
Finally, the present method is applied to a simple numerical example.

Introduction

This paper describes the application of the Trefftz-type boundary element
method to the sensitivity analysis of the boundary value problem of Poisson equa-
tion.

Firstly, the Trefftz formulation for the boundary value problem of Poisson equa-
tion is formulated. In the formulation, the inhomogeneous term of Poisson equation
is approximated with the polynomial function in Cartesian coordinates to derive
the related particular solution. The use of the particular solution transforms the
boundary value problem of the Poisson equation into that of the Laplace equation.
Since the unknown parameters included into the particular solution depends on the
unknown function, the derived boundary value problem is solved by the iterative
process.

The unknown function is approximated with the T-complete function and the
particular solution. Direct differentiation of the function leads to the sensitivities.
The boundary-specified value and the shape parameter are taken as the variable for
the sensitivity analysis and then, the sensitivity analysis formulations are described.

Trefftz Formulation for Poisson Equation

We shall consider the governing equation and the boundary conditions of the
boundary value problem of Poisson equation given as

∇2u + b(x, y, u) = 0 (in Ω) (1)

u = ū (on Γu) , q = q̄ (on Γq) (2)
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where Ω, Γu and Γq denote the object domain under consideration and its potential
u- and flux q-specified boundaries, respectively.

We shall approximate the inhomogeneous term b with a polynomial as follows.

b = c1 + c2x + · · · + c21y
5 ≡ c1r1 + c2r2 + · · · + c21r21 = cT r (3)

In this study, the term b is approximated with the 5-order polynomial. The use of
the equation (3) transforms the original governing equation as follows.

∇2u + cT r = 0 (4)

Since the term ri is the term of the polynomial function, the related particular
solution up

i can be determined easily.

In the Trefftz method, the homogeneous solution of the governing equation uh

is approximated with the superposition of the related T-complete function u∗
i [1].

The unknown function u is approximated with the T-complete function u∗
i and the

particular solution up
i as follows.

u = uh + cT up = aT u∗ + cT up (5)

where a denotes the unknown parameter vector for approximating the homogeneous
solution.

Equation (5) satisfies Eq.(1) but dose not satisfy Eq.(2). Substituting Eq.(5)
to (2) leads to the residual expressions. The residual equations are satisfied at the
boundary collocation points by means of the collocation method. We have

Ka = f − Bc (6)

The unknown parameter vector c in Eq.(6) is determined by the iterative pro-
cess. Equation (3) held at the iteration step (k) and (k + 1) is as follows.

b(k+1) = rT c(k+1) , b(k) = rT c(k)

Subtracting both sides of the above equations leads to

b(k+1) − b(k) = rT (c(k+1) − c(k)) ≡ rT ∆c (7)

where the superscript (k) denotes the number of iteration.
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The collocation points referred as “the computing point” are placed on the
boundary and within the domain. Holding Equation (7) at the computing point
and arranging them in the matrix form, we have

D∆c = f (8)

where D and f denote the coefficient matrix and vector, respectively. Once equation
(8) is solved for ∆c with the singular value decomposition, the parameter c is
updated with

c(k+1) = c(k) + ∆c (9)

The convergence criterion is defined as

η ≡ 1
Mc

M
∑

i=1

|∆b(Qi)| < ηc (10)

where Mc and ηc denote the total number of the computing points and the positive
constant specified by an user, respectively.

Sensitivity Analysis for Specified Value on Boundary

We shall consider here that the inhomogeneous term depends only on the un-
known function u; i.e., b = b(x, y, u).

Direct differentiation of Eq.(5) with respect to the specified value leads to

u̇ = ȧT u∗ + ċT up (11)

where ( ˙ ) denotes the differentiation with respect to the specified value. Holding
Eq.(11) at all computing points, we have

K1ȧ + B1ċ − Iu̇ = 0 (12)

Since the matrix K and the vector B do not depend on the specified value, direct
differentiation of Eq.(6) with respect to the variable leads to

Kȧ + Bċ = ḟ (13)

Direct differentiation of Eq.(3) with respect to the specified value leads to

ċT r − ∂b

∂u
u̇ = 0
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Holding this equation at all computing points, we have

Gċ − H1u̇ = 0 (14)

Equations (12), (13) and (14) are collected in the system of equations, which
are solved for u̇.

Sensitivity Analysis for Shape Parameter

Direct differentiation of Eq.(5) with respect to the parameter, we have

ȧT u∗ + ċT up − u̇ = −(aT u̇∗ + cT u̇p) (15)

where ( ˙ ) denotes the differentiation with respect to the parameter. Holding
Eq.(15) at the computing points, we have

K1ȧ + B1ċ − Iu̇ = g1 (16)

Direct differentiation of Eq.(6) with respect to the parameter, we have

Kȧ + Bċ = ḟ − K̇a − Ḃc ≡ g (17)

Direct differentiation of Eq.(3) with respect to the parameter, we have

ċT r − ∂b

∂u
u̇ = −cT ṙ

Holding this equation at the computing points, we have

Gċ − H1u̇ = g2 (18)

Equations (16), (17) and (18) are collected in the system of equations, which
are solved for u̇.

Example and Discussion

An object domain and boundary conditions are shown in Fig.1. A governing
equation is given as follows.

∇2u + u = 0 (19)
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Fig. 1: Object under Consideration

(a) (b) (c) (d) (e)

Fig. 2: Placement of computing points

Fig. 3: Distribution of sensitivity with respect to specified value
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Fig. 4: Distribution of sensitivity with respect to shape parameter

44 collocation points are placed uniformly on the boundary. Two collocation points,
which are placed at each corner point, have the same coordinates and different
normal vector. In addition to the boundary collocation points, some internal points
are taken as computing points. The placement of the points are shown in Fig.2.

First, we shall take specified value u1 as the variable for the sensitivity analysis.
Distributions of numerical and theoretical solutions of sensitivities are compared in
Fig.3. The abscissa and the ordinate denote x-coordinates of the collocation points
and numerical solutions of sensitivities, respectively. We notice that the difference
between numerical and theoretical solutions is improved rapidly as the number of
computing points increases.

Next, we shall take specified value L as the variable for the sensitivity analysis.
Distributions of numerical solutions for sensitivities in case of Mc = 45 and 65 are
compared in Fig.4. We notice that the difference between numerical and theoretical
solutions in case of Mc = 45 is relatively greater than that in case of Mc = 65.
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