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Summary 
 

       The steady-state convective-diffusive solid-liquid phase change problem associated 
with temperature fields in direct-chill, semi-continuously cast billets and slabs from 
aluminum alloys has been solved by the Diffuse Approximate Method (DAM). The 
solution is based on formulation, which incorporates the one-phase physical model, nine-
noded support, second order polynomial trial functions, and Gaussian window weighting 
functions. Realistic boundary conditions and temperature variation of material properties 
are included. Two-dimensional test case solution is shown, verified by comparison with 
the Finite Volume Method (FVM) results. 

Introduction 
 
       Direct-chill (DC) casting is currently the most common [1] semi-continuous casting 
practice in production of aluminum alloys. The process involves molten metal being feed 
through a bottomless water-cooled mould where it is sufficiently solidified around the 
outer surface that it takes the shape of the mould and acquires sufficient mechanical 
strength to contain the molten core at the center. As the strand emerges from the mould, 
water impinges directly from the mould onto the surface (direct-chill), falls over the cast 
surface and completes the solidification. Related transport, solid-mechanics, and phase 
change kinetics phenomena are extensively studied [2] and many different numerical 
methods have been used in the past to solve the transport phenomena in the casting. The 
proper prediction of the temperature, velocity, species, and phase fields in the product is 
one of the prerequisites for automation of the process and related optimization with 
respect to its quality and productivity. The FVM represents one of the most widely used 
techniques [3] for solving the discussed problem. Even when using this classical 
numerical method in involved coupled transport phenomena context, i.e. prediction of the 
macrosegregation, several not sufficiently understood iteration scheme issues [4] 
surprisingly appear. Several mesh-reduction techniques such as the Boundary Element 
Method (BEM) have been used in the past to solve the heat transfer in respective DC 
casting model. The use of classical BEM in the two-domain context of solidification has 
been developed in [5]. The use of Dual Reciprocity Boundary Element Method 
(DRBEM) in the framework of the one-domain context has been developed in [6]. The 
use of Radial Basis Function Collocation Method (RBFCM) in present context has been 
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pioneered in [7]. In this paper, the DAM [8,9] is upgraded to nonlinear convective-
diffusive transport phenomena problems with nonlinear material properties and phase 
change, and applied to the posed industrial problem. The present research has been 
incited by the need for straightforward numerical resolution refinement in areas with high 
gradients and difficulties in application of the FVM in macrosegregation problems. 

Governing Equations 
 
       The heat transfer in DC casting can be reasonably represented in the framework of 
the one-phase continuum formulation [10] which assumes local thermodynamic 
equilibrium between the phases. This formulation can in solidification context involve 
quite complicated constitutive relations. However, because of the conference paper 
limitations, these have to be introduced here in its most simplified form in order to point 
out the computational methodology instead of the physics. Consider a connected fixed 
domain Ω  with boundaryΓoccupied by a phase change material described with the 
temperature dependent density ρ℘

of the phase ℘, temperature dependent specific heat at 

constant pressure c℘ , effective thermal conductivity k , and the specific latent heat of the 

solid-liquid phase change 
mh . The one-phase continuum formulation of the enthalpy 

conservation for the assumed system is 

( ) ( ) ( ) ( )V V
S S S S L L L Lh vh k T vh f v h f v h

t
ρ ρ ρ ρ ρ∂

+∇⋅ = ∇⋅ ∇ +∇⋅ − −
∂

r r r r                      (1) 

with mixture density defined as V V
S S L Lf fρ ρ ρ= + , mixture velocity defined as 

V V
S S S L L Lv f v f vρ ρ ρ= +

r r r , and mixture enthalpy defined as V V
S S L Lh f h f h= + . The 

constitutive mixture temperature- mixture enthalpy relationships are  

ref

T

S ST
h c dT= ∫            ( ) ( )

S

T

L S L S mT
h h T c c dT h= + − +∫                                                (2,3) 

with 
refT  and 

ST  standing for the reference temperature and solidus temperature, 

respectively. Thermal conductivity and specific heat of the phases can arbitrarily depend 
on temperature. The liquid volume fraction V

Lf  is assumed to vary from 0 to 1 between 
solidus 

ST  and liquidus temperature 
LT . We seek for mixture temperature at time 

0t t+ ∆  
by assuming known temperature and velocity fields at time 

0t , and boundary conditions. 

Solution Procedure 
 

     The solution of the problem is demonstrated on the general transport equation defined 
on fixed domainΩwith boundary Γ , standing for a reasonably broad spectra of mass, 
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energy, momentum and species transfer problems (and includes also equation (1) as a 
special case). 

( ) ( ) ( )C Cv S
t
ρ ρ∂

Φ +∇⋅ Φ = −∇⋅ − ∇Φ +      ∂
Dr                                                   (4) 

with , , , , ,t vρ Φ Dr  and S standing for density, transport variable, time, velocity, diffusion 
matrix and source, respectively. Scalar function Cstands for possible more involved 
constitutive relations between conserved and diffused quantities. The solution of the 
governing equation for the transport variable at the final time 

0t t+ ∆  is sought, where 

0t represents the initial time and t∆ the positive time increment. The solution is 
constructed by the initial and boundary conditions that follow. The initial value of the 
transport variable ( ),p tΦ

r at point with position vector pr  and time 
0t  is defined through 

the known function 
0Φ  

( ) ( )0, , ;p t p t pΦ =Φ ∈Ω+Γ
r r                                                                                      (5) 

The boundaryΓ  is divided into not necessarily connected parts
D N RΓ = Γ ∪Γ ∪Γ  with 

Dirichlet, Neumann and Robin type boundary conditions, respectively. These boundary 
conditions are at the boundary point pr  with normal nΓ

r and time 
0 0t t t t≤ ≤ + ∆  defined 

through known functions D
ΓΦ , R

ΓΦ , R
refΓΦ  

;D
DpΓΦ =Φ ∈Γ

r      ;N
Np

n Γ

Γ

∂
Φ =Φ ∈Γ

∂
     ( );R R

ref Rp
n Γ Γ

Γ

∂
Φ =Φ Φ−Φ ∈Γ

∂
    (6,7,8) 

The involved parameters of the governing equation and boundary conditions are assumed 
to depend on the transport variable, space and time. The solution procedure is in this 
paper based on the combined explicit-implicit scheme. The discretisation in time can be 
written as  

( )( )
( ) 0 0

0 0

C CC CC

dC
d

t t t

ρ ρ ρρ ρρ
+ Φ −Φ −−∂ ΦΦ ≈ ≈

∂ ∆ ∆
                                     (9) 

by using the two-level time discretisation and Taylor expansion of the function ( )C Φ . 

The known quantities are denoted with overbar. The source term can be expanded as 

( ) ( )dSS S
d

Φ ≈ + Φ −Φ
Φ

                                                                                                         (10) 
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The unknown Φ  can be calculated from the equation 

( ) ( )0
0 0 0 0 0 0C C CdC dSv S

t t t d d
dC dS

t d d

ρ ρ ρ ρ

ρ

− + Φ +∇⋅ ∇Φ −∇⋅ + − Φ
∆ ∆ ∆ Φ ΦΦ =

−
∆ Φ Φ

D r
            (11) 

The value of the transport variable 
nΦ is solved in as set of nodes ; 1,2,...,np n N=

r  of 
which NΩ

belong to the domain and NΓ
to the boundary. The iterations over one timestep 

are completed when the equation (12) is satisfied, and the steady-state is achieved when 
the equation (13) is achieved 

max n n itrΦ −Φ ≤Φ           
0max n steΦ −Φ ≤Φ                                                     (12,13) 

The value of the unknown derivatives of the variable 
nΦ  in point 

npr is approximated by 
the moving least squares method which uses the values of 

iΦ  at I  points 

; 1,2,...,ip i I=
r , situated in the vicinity of and including 

npr . One can write the 
following approximation of the function and its first and second order partial derivatives 

( ) ( )1

K

k n k k np p pα ψ=Φ ≈ −∑
r r r          ( ) ( )1

K

k n k k np p p
p pς ς

α ψ=

∂ ∂
Φ ≈ −

∂ ∂
∑

r r r       (14,15) 

( ) ( )
2 2

1 ; , ,K

k n k k np p p x y
p pςξ ςξ

α ψ ς ξ=

∂ ∂
Φ ≈ − =

∂ ∂
∑

r r r ;                                                (16) 

Functions 
kψ have been chosen as polynomials 

1 1,ψ =  ( )2 ,xp pψ =
r  

3 ,ypψ =  

( )4 ,x yp p pψ =
r ( ) 2

5 ,xp pψ =
r  2

6 ypψ = , i.e. 6K = . The initial conditions are assumed 

to be known in all nodes 
npr . The coefficients 

n kα  can be calculated from the 
minimization of the following functional 

( ) ( ) ( )

( ) ( )

( ) ( )

2

1
1

2

1
1

2

1
1

I
K

kn i n i n i n k k i n
i

I
KD D
ki n i n i n k k i n

i

I
KN N
ki n i n i n k k i n

i

p p p p

p p p p

p p p p
n

α ω αψ

ω αψ

ω α ψ

=Ω
=

=Γ Γ
=

=Γ Γ
=

Γ

ℑ = ϒ − Φ − −  

+ ϒ − Φ − −  

 ∂
+ ϒ − Φ − − ∂ 

∑ ∑

∑ ∑

∑ ∑

r r r r

r r r r

r r r r
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( ) ( )( ) ( )
2

1 1
1

I
K KR R R
k ki n i n i n k k i n refi n k k i n

i
p p p p p p

n
ω αψ α ψ= =Γ Γ Γ

=
Γ

 ∂
+ ϒ − Φ − −Φ − − ∂ 
∑ ∑ ∑

r r r r r r  

                                                                                                                                         (17) 

This leads to the following system of K K×  equations for calculation of the unknown 
coefficients 

n kα  in each of the points 
npr  

1 ; 1,2,...,K

k n jk n k n jA b j Kα= = =∑                                                                                  (18) 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

1

1

1

I

n jk i j i n n i n k i n
i

I
D

i j i n n i n k i n
i

I
N

i j i n n i n k i n
i

I
R R

i refi j i n j i n n i n
i

refi

A p p p p p p

p p  p p p p

p p p p p p
n n

  p p p p p p
n

            

ψ ω ψ

ψ ω ψ

ψ ω ψ

ψ ψ ω

Ω
=

Γ
=

Γ
=

Γ Γ

Γ Γ
=

Γ

Γ

= ϒ − − −

+ ϒ − − −

∂ ∂
+ ϒ − − −

∂ ∂

 ∂
+ ϒ Φ − + − − × ∂ 

× Φ

∑

∑

∑

∑

r r r r r r

r r r r r r

r r r r r r

r r r r r r

( ) ( )R
k i n k i np p p p

n
ψ ψ

Γ

 ∂
− + − ∂ 

r r r r

                           (19) 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1 1

1

2

1

I I
D D

n j i j i n n i n i i j i n n i n i
i i

I
N N

i j i n n i n i
i

I
R R R R R

i i refi j i n i refi j i n n i n
i

b p p p p p p  p p

p p p p
n

  p p p p p p
n

ψ ω ψ ω

ψ ω

ψ ψ ω

Ω Γ Γ
= =

Γ Γ
=

Γ

Γ Γ Γ Γ Γ
=

Γ

= ϒ − − Φ + ϒ − − Φ

∂
+ ϒ − − Φ

∂

 ∂
+ ϒ Φ Φ − +Φ Φ − − ∂ 

∑ ∑

∑

∑

r r r r r r r r

r r r r

r r r r r r

      (20) 

The following point condition indicators have been used in equations (17,19,20) 

1;
0;

D
i

p
pΩ

∈Ω
ϒ =  ∉Ω

r

r    1;
0;

D

D
i D

p
pΓ

∈Γ
ϒ =  ∉Γ

r

r    1;
0;

N

N
i N

p
pΓ

∈Γ
ϒ =  ∉Γ

r

r    1;
0;

R

R
i R

p
pΓ

∈Γ
ϒ =  ∉Γ

r

r              (21) 

The following weighting function has been chosen  

( ) ( ) ( )2exp / ; ; 0;n n n n n nw p c p p p w p pσ σ σ= − ⋅ ≤ = >
r r r r r r                                       (22) 
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according to the recommendations from [7] with 7nc = . The size of support 
nσ is 

chosen to contain 9 nodes. The calculation over one timestep involves the following 
operations: I) coefficients 

n kα  are calculated from initial conditions in the domain nodes 
from system (18), II) Equation (11) is used to calculate unknowns in the domain nodes at 

0t t+ ∆ , III) unknowns at the Dirichlet boundary at time 
0t t+ ∆  are determined from the 

Dirichlet boundary conditions, IV) 
n kα at time 

0t t+ ∆  are calculated in the domain and 
boundary nodes from system (18), V) finally, the unknowns at time 

0t t+ ∆  in the 
Neumann and Robin boundary points are determined from equation (14). 

Numerical Example 
 

      This section elaborates the solution of a simplified model of the DC casting process 
by the developed DAM in two dimensions. The steady state solution is shown in this 
paper, approached by a false transient calculation using a fixed timestep of 0.5s . The 
temperature iteration error 

itrT  has been set to 0.001K and the steady state criterion 
steT to 

0.01K . The enthalpy reference temperature 
refT  has been set to 0K . The following 

simplified DC casting case is considered. The computational domain is a rectangle 
(coordinates

xp ,
yp ) 1.25 0xm p m− ≤ ≤ ,0 0.25ym p m≤ ≤ . The boundary conditions 

on the top at 0xp m=  are of the Dirichlet type with 980DT KΓ = , and the boundary 
conditions at the bottom at 1.25xp m= − are of the Neumann type with 0 /N 2F W mΓ = . 
The boundary conditions at the outer surface are of the Robin type with 298R

refT KΓ = . 

The heat transfer coefficients between 0 0.01zm p m≤ ≤ − , 0.0 0.06zm p m− ≤ ≤ − , 
0.06 0.1zm p m− ≤ ≤ − ,and 0.1 1.25zm p m− ≤ ≤ − , are 20 /RT W m KΓ = , 

23000 /RT W m KΓ = , 2150 /RT W m KΓ = , and 24000 /RT W m KΓ = , respectively. 
Material properties correspond to a simplified Al4.5%Cu alloy [6]: 

32982 /S L kg mρ ρ= = , 120.7 /Sk W mK= , 57.3 /Lk W mK= , V V
S S L Lk f k f k= + , 

1032 /Sc W mK= , 1179 /Lc W mK= , 348.2 /Mh kJ kgK= , 775ST K= , 911LT K= .
The liquid fraction increases linearly between 

ST  and 
LT  The initial temperature grows 

linearly with the 
xp  coordinate from 298K at the bottom to 980K at the top. of the 

cylinder. The uniform casting velocity is 0.000633 /Sx Lxv v m s= = − , 
0 /Sy Lyv v m s= = . The DAM solution has been obtained on equidistant 25 125×  node 

arrangement. The calculated results are shown in Figure 1, together with the reference 
FVM results, calculated in the same nodes. Visual comparison of the results on finer grid 
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arrangement 50 250×  shows no difference between the two methods. The DAM 
calculation requires approximately two times more CPU time than the FVM calculation.  
 

 
Figure 1: Calculated temperature distribution in the slab. Solid curve: FVM, dashed curve: DAM. 
Upper curve – centerline, center curve – mid thickness, and lower curve – surface temperature.  

Conclusions 
 
The present paper demonstrates the successful use of the DAM for numerical evaluation 
of a physical model that could be previously efficiently solved only by more established 
numerical methods. It probably represents the first industrial use of this type of mesh-free 
method for solving convective-diffusive solid-liquid phase change problems with 
temperature dependent material properties and complex boundary conditions. All types of 
technically relevant boundary conditions have been introduced in a systematic way. The 
accuracy of the method is similar to the FVM. When compared with other mesh-free 
methods used in present context one can conclude: The method can cope with physically 
more involved situations than the front tracking BEM [5], where the calculations are 
limited to a uniform velocity field, constant material properties of the phases, and 
isothermal phase-change. When compared with the DRBEM [6], the method does not 
need any integrations and boundary polygonisation. The method appears much more 
efficient as the RBFCM [7], because it does not require a solution of the large systems of 
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equations. Instead, small (in our case 6x6) systems of linear equations have to be solved 
in each timestep for each node. The method is going to be used in coupled transport 
phenomena context in our future work. 
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