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Summary 
 

In this paper, a microscopic cylinder cell including a cylindrical void is 
considered. The microscopic velocity and strain fields of the cell are analyzed by 
assuming that the matrix is a mixed isotropic-kinematic hardening media. From the 
relation of the stress-stain of the matrix material a rate equation of void growth is 
obtained as a function of stress triaxiality and the void volume fraction.  

 
Introduction 

 
Ductile rupture mainly results from the initiation, growth and coalescence of 

microscopic voids in engineering materials. As a model of voids, long and roughly 
cylindrical voids are important because they were often observed at the neck of 
tensile specimens after large deformation. It might also result from long cylindrical 
inclusions (e.g., sulfides in steels or silicones in aluminum alloys) that decohere from 
the matrix after straining. In addition, although the cylindrical geometry is less 
general than the spherical one, its simplicity allows deriving solutions almost in 
simple and closed forms. It, therefore, states almost explicitly the influence of the 
parameters such as void volume fraction, stress triaxiality and the rate sensitivity of 
the matrix material [1]. These advantages account for its application in several 
theoretical analyses. McClintock’s [2] and Rice and Tracey’s [3] pioneering works 
put forward the exponential dependence of void growth-rate on the triaxiality ratio of 
remote stresses in a rigid-plastic material. Budiansky, Hutchinson and Slutsky [4] 
suggested that this dependence be described with a polynomial for a power law 
matrix material. Licht and Suquet [1] presented a solution, with a closed form, of the 
growth of a cylindrical void in a finite shell of a nonlinear power law viscous matrix. 
Tracey [5] derived upper and lower bounds for the growth rate of cylindrical voids in 
a finite volume of a strain-hardening matrix. Needleman [6] studied the growth of 
cylindrical voids in a viscoplastic matrix material subjected to plan-strains. Gurson [7] 
investigated two different deformation modes of a representative volume element, 
which is fully plastic, and proposed a form of the yield criterion for a porous material 
with cylindrical void. Pan and Huang [8] considered effects of void growth on 
constitutive relations for viscoplastic materials containing circular-cylindrical voids. 
Pan [9] studied cylindrical void growth in shear bands for nonlinear power-law 
viscous solids. Most of models and theories mentioned above were derived based on 
viscous or isotropic matrix materials which do not strictly adapt to many metallic 
materials, and the influences of void evolution on constitutive equation is not clear 
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enough. The present work is devoted to the research on porous metallic materials, 
such as cast aluminum alloys, steel alloys, sintered powder and metallic foam and so 
on, which are widely used in engineering. The research on the porous materials is 
significant and needs combined micro-macroscopic analysis. The work is the 
establishment of the evolution law of void which is obtained through the analysis of 
microscopic speed and strain/stress fields of cylinder void and the conversion from 
microscope to macroscope. 

     
Cylindrical void model and void evolution law 

 
A long thick-walled cylinder cell containing a long cylindrical void under axial 

and radial tension, which aligned in the axial direction and with a circular 
cross-section, is shown in Fig. 1. The radius of the void and the cell are a and b, 
respectively, and the radius of an arbitrary point of the matrix is r. The volumes of the 
void and the matrix are V  and V , respectively. The volume of the cell is then 

. In the following, upper-case letters and lower-case letters denote the 
macroscopic and microscopic quantities, respectively. For example, Σ  and Ε  

are macroscopic stress and strain,  a n d 

v m

ijσ

mv VVV +=

ij

b=

ij

ijε  are the corresponding microscopic 
stress and strain. The matrix is assumed homogeneous, incompressible, rigid-plastic 
and mixed isotropic-kinematic hardening. The boundary condition at  and the 
matrix incompressibility condition can be expressed as: 

r

jiji xv Ε= & ,                             (1) 

0332211 =++ εεε &&& .                                             (2) 
Assuming x1, x2, x3, are orthogonal principal local axes, and an axisymimetic motion 
with symmetric axis x3 is considered, one has  

)(0,02211 jiij ≠=Ε≠Ε=Ε &&& .                               (3)           
The contraction in x3-direction or the value 
of 3311 ΕΕ dd is important, which 
determines the deformation in x3 direction 
and relates the effect of stress triaxiality on 
void growth. A parameter, w, is therefore 
introduced: 

 ,                 (4) 1133 Ε−=Ε && w
and the volumetric strain can be expressed 
as:  

ω−=≥Ε=Ε= 2with,011 BdBd
V
dV

kk ,                           

(5) 
where B can be regarded as a strain 
restriction function which determines the 
effects of stress triaxiality on void evolution. 

 

 
Fig. 1. Long cylindrical void model 
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When , corresponds to the case of plane-strain, in which the deformation 
restriction in x

0=w
3-direction is very strong and B takes the maximum value of 2. The 

void growth also takes the maximum value under the same applied strain . 
However, if the deformation restriction in x

Εd
3-direction is very weak,  will take a 

large value and B is smaller, as a result, the void growth should also be smaller. If 
, B vanishes, it means no volume dilatation will take place. The range of B may 

vary between 0 and 2. The condition of continuity for matrix can be derived as 
follows: 

w

2=w

 ,                                            (6) kkdfdf Ε−= )1(
where  denoted the current void volume fraction. From Eq. (1), the 
following microscopic velocity field under cylindrical coordinates (r, , x

VVf v /=
θ 3) can be 

obtained: 
 3333222111 ,sin,cos xbb bbb Ε=Ε=Ε= &&& νθνθν .                    (7) 
In a cylindrical coordinate system as shown in Fig. 1, the microscopic strain rate 

 in the matrix is given by: ijε&

333 /,, dxdvrvdrdv rrr === εεε θ &&&                             (8) 
where  and  are the components of the velocity field . Following these 
relations and noticing the condition of matrix incompressibility, Eq. (2), we obtain 

rν 3ν v

112

2

])2[(
2
1

Ε−−= && B
r
bBrε , 112

2

])2[(
2
1

Ε+−= && B
r
bBθε , .  (9) 11)2( Ε−= && Bzε

The increments of intrinsic time measures  [10] is defined as follows, with 
the assumptions of rigid-plasticity and incompressibility of the matrix,  

ζd

 2
1

)( ijijddd εεζ = .                                              (10) 
Then, from Eq. (9) one obtains 

11
222

11
4224

2
)2(3

2
1)2(3

2
1

Ε−+=Ε−+= dBBdrBBb
r

d ξ
ξ

ζ ,  (11) 

where 22 br=ξ . From Eqs. (9) and (11), we obtain  
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2
1
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ε

BB
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d
d r
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−−
= ,                                  (12a)  
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d
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222 )2(3
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1
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BB
B

d
d z

−+

−
= .                                  (12c) 

The endochronic constitutive equation [10] can take into account mixed 
isotropic-kinematic hardening, and will be used to derive the required evolution law. 
The constitutive equation can be expressed as follows:  
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,                             (13) 

where  and  denotes the microscopic deviatoric stress and the microscopic 

initial yield stress, respectively. 
ijs 0

ijs
)(ζζτ Fdd =  is microscopic intrinsic time [10]. 

∑
=

−=
3

1
)exp()(

r
rrC τατρ                                        (14) 

is the kernel function. If the hardening function  and assuming 
proportional loading, one obtains the microscopic stress field of the cylindrical void 
cell: 
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where , (r=1,2,3) and  are material constants, which can be determined 
from a  curve by applying Eq. (15) to a simple tension and using nonlinear 
curve fitting program.  

rC
σ

rα
pε

k
−

 Letting  and  be the macroscopic and the microscopic potential functions, 
respectively, the macroscopic stress can be expressed as:  

Φ φ

dV
E

s
V

dV
EVE ji

lk

V klV
jiji

ij
mm ∂

∂ε
∂
φ∂

∂
∂

∫∫ ==
Φ

=Σ
11

.                    (16) 

Substituting (9) and (15) into (16), we can obtain macroscopic stress components 
,  and Σ , which are the functions of f,  and material parameters C11Σ

rα
22Σ 33 B r, 

 and k, (r=1,2,3), as following:   

32112211 ΛΓ+ΛΓ=Σ=Σ ,                                     (17a) 

4221321133 ΠΓ−ΠΓ−ΠΓ+ΠΓ=Σ ,                            (17b) 
then the macroscopic mean stress , and the macroscopic equivalent deviatoric 
stress  can be expressed as: 

mΣ

eΣ

)(
3
1)(

3
1

42213211321 ΠΓ+ΠΓ−ΠΓ+ΠΓ=Σ+Σ+Σ=Σm ,          (18a) 

 ,                                 (18b) 422131 ΠΓ+ΠΓ=Σ−Σ=Σe
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where  is the macroscopic yield normal stress and  is initial void volume 
fraction. It is known that the macroscopic stress triaxiality , which plays an 
important role in void growth, is defined as:  

0f
Λ

.                                                  (20) 
Furthermore, numerical results show that  is mainly determined by the strain 
restriction function and the initial and currant void volume fraction  and , and 

 can be expressed as:

Λ
0f f

=B  

 )]
1

1(exp[)1)(1(
3 2100 Λ+

Λ
−−++=

−
γγχχ ff

B
B

.                   (21) 

where  is material constants. Some numerical results of the relation are 
plotted under several void volume  (see Fig. 2).  

210 ,,, γγχχ
f

The macroscopic intrinsic time and macroscopic intrinsic time measures are 
denoted with  and , respectively, and we have [10]: Τ Ζ

)(ΖΖ=Τ fdd .                                                (22)  
The increments of macroscopic intrinsic time measures is defined as the 

Euclidean norm of the macroscopic deviatoric plastic strain increment, noticing the 
assumptions of rigid-plasticity and incompressibility of the matrix, we have 

2
1

)( jiji ddd ΕΕ=Ζ .                                             (23)                     
From Eqs. (4), (5) and (23) we obtain 

kkd
B
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3
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11 .                             (24) 

Combining Eqs. (5), (6) and (24), one can deduce the following relation: 

 
B
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.                                        (25) 

Substituting Eq. (21) into (25), one obtains the equation of growth rate of long 
cylindrical voids with mixed isotropic-kinematic hardening matrix as following: 

 )]
1

1(exp[)1)(1)(1(
2
3

2100 Λ+
Λ

−−++−=
Ζ

= γγχχ fff
d
dff growth

& .   (26) 

Eq. (26) indicates that the rate of void growth is an exponential function of stress 
triaxiality and related to initial and currant volume fraction of void. 
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