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Analysisof Crack Tip Stress Using Compactly Supported Meshless
Method

T.S.Lil, S M. Wong?, K. S. Chan®

Summary

In this paper, a mesh-free algorithm is developed for the analysis of crack tip stress
in isotropic materials. The proposed algorithm is derived from a class of continuously
differentiable and positive definite compactly supported radial basis functions (CSRBFs).
Two classical crack tip problems are solved as examples. The stress intensity factors are
analyzed to exhibit the performance of the proposed method.

Introduction to Compactly Supported M eshless Functions

This paper introduces a meshless algorithm derived from a class of compactly sup-
ported radial basis functions (CSRBFs) for solving the governing partial differential equa-
tions of plane elasticity problems involving single crack. CSRBFs have the advantage of
a simple mathematical formulation and truly mesh free property. The continuously differ-
entiable, positive definite and integrable features of CSRBFs can aso be a great benefit in
solving higher order partial differential equations with complicated boundaries.

CSRBFs were firstly introduced by Wu [1] and later expanded by Wendland [2] in the
mid 1990s. The principleideaof CSRBFsisto use apolynomial as afunction of Euclidean
distance r with support on [0, 1] and vanish on [1, «]. The basic definition of the CSRBF
¢ k(r) havetheform

di(r) =[1=r]} p(r), fork>1 (1)

subject to following conditions

n_J 1-n" ifo<r<1;
[1—r]+_{0 ifr>1,

where p(r) is aprescribed polynomial, r =|| x—X;j ||, j = 1,2,...,N is the Euclidean dis-
tanceand x, xj € RY. Theindex | in (1) is the dimension number and 2k is the smoothness
of the function. For small number of k=0, 1,2, 3, Wendland's CSRBFs can be formulated
explicitly in the following expressions

dro(r) =[1-r],,

O a(r) = [1—r] {1+ Dr + 1),

ora(r) =[1— r]'jz [(12+41 +3)r2+ (31 4+ 6)r + 3], @)
(N=[1-r

ora(r) = [1—r] 2 [(13+ 9124 23] + 15)r3
+(612 4 361 + 45)r2 + (15| + 45)r + 15)].

Thevaluel is determined by L%J +k+ 1, where d is the dimension number.
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Let f(x) : R — R be area-valued function and let {x;: j=1,2,...,N} € RY be N
distinct points. Let ¢, «(rj) be a positive definite CSRBFs, whererj = || x —X; || is the
Euclidean distance between x and x ;. We can scale a basis function with compact support
on [0, 8] by replacing r; with r;/&; where §; > 0. With a scaling factor §; the compactly
supported approximation function s(x) to f(x) can be written as

N .

500 =3, o (5 ). ®
j=1 !

where 8; can be variable or constant for different node points depends on the nature of

the problem. In general, the smaller the value of §;, the higher percentage of zero entries.

However, this would also be resulted in lower accuracy. The Error bound for CSRBFs

approximation of f € HS(RY) can befoundin [3].

Governing Equations of Single Crack Models

To illustrate the application of CSRBFs, two classical crack problems subject to ten-
sions are considered.

Model 1. Single-edge crack problem contains a single edged-crack along the negative
x-axis and its crack tip occurs at the origin over a square plate as depicted in Figure 1(a).
The solution of the problem has been found to be anti-symmetric. This leads to have the
transformation property that requiresonly to solve the upper-half of the square plate defined
onQ={(xy),-3<x<50<y<$%}

Model 2: Centre crack problem contains a single crack in the centre of a square plate as
illustrated in Figure 1(b). This problem satisfies the symmetry property, so only the quarter
region of the plate defined on Q = {(x,y),0 <x < §,0 <y < §} isconsidered.
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(a) edge crack Model (b) centre crack Model

Figure 1. Two examples of mode | crack tip problems

These two models involve the following set of equilibrium equations resolved into the x
and y directions

dox | Iy _
ox  dy

JTlyy  dOy
O, and W a—y = 0,
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subject to the essential and natural boundary conditions over the solved domain Q. The
corresponding function of stresses, 6, 6y and shear stress, T,y are defined by

E E E

Ox = [T va) & T V)i Oy = gy (& H Ve Ty = 5y ()

where gx = du/dx, ey = dv/dy are the strains in x and y directions respectively, yxy =
ov/ox+ du/dy is the shear strain, v is the Poisson’s ratio and E is the Young's modulus, u
and v being displacementsin x and y directions respectively. According to these equations,
the governing displacements equations in Q\0Q C R?, can be modelled by the following
system of equations

1 9u  (1+v) 0>v 1%
(l—v)W+2(l—v)axay+§a_y2
1 9% (14+v) %u  10%v
1) a2 T 20— viy " 200

= 0 (4)

= 0 (5)

Thelocal analytic solution of the displacementsu and vinthevicinity of the crack tip can be
modelled by a series expansionsin polar coordinates (r,0) about the crack tip. According
to the results presented by Nairm [4], the analytic solution of the tangential displacements
with respect to r and 6 are given respectively by

_1e Cin [y1c0s(252) 0+ y2c0s(22) 0] +

v - w3 H G g>e+vssm(“%'3>e] } ©
_ 13 Cun [vasin (252) 6 —yosin (252) 6] +

b = Eg { Con [— 74003(%)6+ygcosf%2)6] } 0

where Cy, and Cyp, are the expansion coefficients to be determined. Thetermsy1, 2, y3 and
V4 are defined by

nn=6—n—-v(n+2), Yo=(N+2—-4ly) (1+v),

va=(n—24+4ly) (1+Vv), v2=n+6+v(n—2),
Owhenniseven;
1 when nisodd.
The series solution automatically satisfies the equilibrium condition given by equations (4)
and (5).

subject to the following conditions |, = nmod 2 = {

Computational Algorithm and Results

To handle the boundary singularity in the neighbourhood of the crack tip, we adopt the
overlapping decomposition technique. The solved domain is divided into two overlapping
subdomains Q, and Q, such that Q = Q, UQ, as depicted in Figure 2. The subdomain
Q, as shown in Figure 2(b) is the open upper-half rectangle, which covers the neighbour-
hood of the crack tip. In this study, the numerical solutions in € ,is calculated by using
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Figure 2: (a) The coIIocatlon pointsin €, (b) the collocation pointsin €.

Wendland's CSRBFs, while the series expansions (6) and (7) are used to approximate the
displacementsin €2,. In order to ensure the smoothness across the two regions Q2 ; and Q2,,,
we include some nodal points in 2, when we formulate the CSRBFs method for the sub-
domain ,. Similarly, some of the nodal pointsin Q, are aso included in the formulation
of the series expansion method for €2,,.

Let Xg = {X1,X2,-..,Xn, } C R? be aset of distinct interior points that are selected to
coincide with the collocation pointsin Q,\0€2, Xa = {X(n,+1),---,X(Ny4Ny) } iN 0Q bethe
boundary points, and X3 = {X(N,+N+1)» - - - » X(Ny+No+Ng) } e asmall set of nodal pointsin
Q1N Q. Let N be the total number of collocation points such that N = (N1 + Nz + N3).
By collocating at the same set of nodal points (xi,yi)i’\‘=l from the sets X1, Xz and X3, the
displacements u(x;,y;) and v (i, i) in equations (4) and (5) are approximated by CSRBFs
1 k(r) at these collocation points. The numerica agorithm is constructed based on a sim-
ple Wendland's function ¢42(r /8) = [1— r/6]i (3+18r/8+35(r/8)?). The CSRBFsiin-
terpolant for functions u(x;,y;) and v(x;,y;) are given by

Mz

(W) = X o [[L-r/8]S (3+18r/5-+35(1/8)%) |, ®)

1

Vh(Xi,Yi) =

Mz

By [[L—r/8 (3+18r/5+35(1/8)?)| ©
1

whererj = /(x —X;j)2+ (yi — yj)? and 8; is adesired scaling factor. The unknown coef-
ficients Bj and j can be determined in which all the set of data points (xi,yi)}.; C R? are
distinct.

The first and second partial derivatives of equations (4) and (5) with respect to x and
y can be determined by differentiating equations in (8) and (9). The approximation solu-
tions un(X;, i) and vh(Xi, Yi) can be determined by substituting these partial derivativesinto
equations (4) and (5), which yields the following system of eguations

N (1+v) &, 18 B
; [MXJ] (1_\/)231 [Pj]—’_éjglaj [Myj] =0 (10)
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N N N
2. Bi [Myj]+%2aj [F’j]+%j§lm Mq] = 0O (1)

2 LS. 2 LS. 2 LS.
where My, = %&M, My, = %&M and P = 3@’4-82)(7%)1//51))_ The specific bound-

ary conditionsT'{s as described in Figure 2 are given by

Edge crack model Centre crack model
T | 0x=0,7¢=0,x=-5,0<y<3; | u=0,74=0,x=0,0<y<§;
T2 | 0x=0,Ty=0,x=5,0<y<f | 0x=0,1y=0,x=5,0<y<f;
I3 | 0y=10,19=0, -53<x<§,y=5; | 6y=10,19=0,0<x<§,y=5;

1"42 Gy: O7 'ny: 0, —%S X
I's: | v=0,74=0,0<x<

For each collocation point in Q1 N Q,, two equations would be set according to the form:
U= U, COSO — Uy SinB, and v = u, SiNB + ug cos6, where u, v are the displacementsin the x,
y directions found by the radial basis function method, u,, ug are the radial and tangential
displacements respectively found by the series method.

In calculating the numerical solutions in the vicinity of the crack tip we select Ns =
(N4 + Ns) distinct noda points (xk, Yk) in the neighbourhood of the crack tip, where N4 is
anumber of pointsin (dQ1N€22) and N5 isanumber of boundary pointsin dQ 2 for 6 = 0.
The displacements of these nodal points are approximated by the series expansions (6) and
(7). Since the analytic solution given by (6) and (7) automatically satisfy the equilibrium
equations (4) and (5), aswell astheboundary conditionsfor 6 = &, we only need to consider
the remaining boundary conditions.

The present algorithm combined with least square approximation method to obtain the
best fit coefficients Cq; and Cy; of the series expansions (6) and (7). In applying the least
square method, we choose | extranodal pointsin €2,, where| > 3. The nodal points have
aone-one correspondence between their polar coordinates and their Cartesian coordinates:
(re, 0k) < (X, Yk), where xx = rcosfy and yx = rgsinfy, fork=1,...,(Ns+1). The sum
of squares of the error for functionsu and v are given by

St = Xm0 [uh (X Vi) — (ufk COosB — ueksmek)]i’
2 = (xey) [Vh (% Yk) — (Ur, SINBK + Ug, cOSBK) |,

where u, and ug are the series expansion defined in equations (6) and (7). The best fit
coefficients C3; and Cyj, | = 1,2, ..., Ns can be determined accordingly by minimizing the
sum of the squares of the error S; and S, by

S S o
Ty 0, and 3y 0, fori=1,2,...,Ns. (12
In the numerical computation, the equations (10), (11), (12) and the given boundary con-
ditions are re-arranged to a matrix form [Q][3] = [P], where [Q] has order 2(N + Ns) x
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2(N+Ns), [@ and [p] are 2(N + Ns) column vectors. Since CSRBF is a class of positive
definite and continuously differentiable function, the resulting matrix [Q] is conditionally
positive definite and hence invertible. Once the unknown coefficients are determined, the
approximation solutions up (X;,Yi) and vh(Xi,Yi) can be calculated accordingly by using
equations (8) and (9). For the numerical comparison, we computed the mode | stress in-
tensity factor K; as given by K; = !i_r)ra(\/z_mce) = v/2nC11, from the result of analysis.
The numerical results of the two considered models are compared against the one listed in
standard textbook [4] as shown in Table 1.

Table 1: Stressintensity factor in the vicinity of crack tip
Stressintensity factor (K|)
Our Results | Textbook [4] results
Edge crack model 32.8 35.4
Centre crack model 20.8 21.0

The numerical results of K, agree well with the well-known results, this indicates a good
performance of the proposed method in applying to solve mode | crack models. The condi-
tioning number and the computational efficient are significantly improved due to the sparse
resultant matrix. The degree of accuracy of the numerical results is very much dependent
on the size of the local support ;. The accuracy of the computations can be enhanced by
using large scaling factor 6 to increase the support for the function, however this resultsin
more intensive computation.
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