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Summary 
   A constitutive model for a composite material of dispersed particles is developed, on which 
imperfections of the particle interface is modeled by employing a spring layer with both sliding and the 
debonding deformations. The imperfection is modeled with the use of Gao’s stress function solutions for 
the spring layered between the particle and the matrix. Especially, a present double equivalent inlucion 
modeling enabled the use of the Gao’s solution to the Eshelby’s equivalent method. The present model is 
applicable for both the particle interface degrading problem and the surface reinforcing problem of the 
composite.  

Introduction 

   Efforts have been made, in general, to develop the macro average material constitutive law for the 
particle dispersed composite material. Hashin-Schtrikman’s theory[1]  based on the variational 
principle has been known to give upper and lower bounds for multiphase composite of isotropic 
elasticity. Since the equivalent inclusion theory for one ellipsoidal particle in an isotropic infinite domain 
was established by Eshelby [2], a number of applications have been made in the area of  the composite 
material, the micro mechanics fields, etc., with the form of Eshelby tensor. The mean field theory by 
Mori-Tanaka [3] that extends the Eshelby’s equivalent theory to the particle dispersed composite 
material is in a closed form, is thus often used as an averaging method of the composite material. When 
the volume fraction of particle is not small, or when constituents’ material rigidities differ notably, stress 
interaction between particles is not negligible , thus it is pointed out by Mura [4] that the accuracy of the 
model falls. The mean-field theory has even been utilized for modeling the composite where the matrix 
undergoes elasto-plastic deformation, by Tandon-Weng [5]. 
   Self-consistent (SC) scheme, on the other hand, provides a concept of treating the media surrounding 
a particle as a homogeneous material with the averaged characteristics of the composite to be determined, 
and has the advantage that the above-mentioned problem can be avoided. On this SC concept, an elastic 
constitutive model with spherical inclusions was developed [6] followed by elasto-plastic model [7]. The 
validity of those models developed was verified by excellent agreements between models and the 
analysis of a meso-scale particle scattered domain using FEM. 
   The above is the case where the interface between the inclusion and the matrix is in perfect adhesion. 
When an imperfect condition exists in the interface, and moreover when its effect on the  macroscopic 
characteristics is considered to be non-negligible, the models mentioned in the above cannot be applied 
as they are. Although the interfacial exfoliation between the inclusion and the matrix in a fiber reinforced 
composite material or the crystal slide of grain in metals is thought in general to bring an interfacial 
imperfection, those phenomena may not necessarily be detrimental; the fracture toughness of a 
composite may sometime be increased, or inter-grain sliding may become the factor of the 
super-plasticity phenomenon in an alloy, and can be advantageous. 
   For modeling the interfacial imperfection, a spring element layer of thickness zero has been 
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considered and addressed by other researchers. For those problems also, the equivalent inclusion method 
can serve as an effective scheme to determine the macro behavior of the comoposite.  
   For the use of the equivalent inclusion modeling for the imperfection-spring problem, Qu [8] derived 
an Eshelby tensor using the Green’s function. However, the applicable range is limited to the case when 
the compliance of the spring is sufficiently low compared with that of the matrix material. Although this 
method is effective in problems such as bonded interface, it is not effective for the problem of weakening 
interfacial conditions, as seen in exfoliation.  
   Gao [9], considering even interfacial exfoliation and slide, obtained the particle solution using stress 
functions effective for all the spring compliance cases. He also gave a solution for the imperfect particle 
subjected to an eigen strain. Although it is for a two-dimension circular particle, Gao’s solution is the 
applicable only solution of the spring, so that this paper aims at building an equivalent inclusion model 
using his solution.  
   In the present effort, consider a macroscopically homogeneous composite material with randomly 
dispersed meso-scopic particles. The objective is to develop a macro-constitutive model for the 
composite when particles undergo interfacial weakening, i.e., exfoliation and slide, as well as interfacial 
bonding. 

Theoretical Model 

   In the authors’ previous work, the two-fold equivalence modeling was performed.  Consider a 
meso-domain in a composite, whose averaged macro-compliance, yet to be determined, is denoted by 
Γ . The quantity with ( ) denotes that of the averaged value to be determined according to the 
self-consistent concept. An inclusion particle is embedded in the averaged medium as shown in Figure 
1(A), where a spring layer is modeled between the inclusion and the surroundings. The model in (A) can 
be made equivalent to the model (B) in Figure 1, where the spring layer keeps unchanged but the 
properties of the core are replaced by those of the surrounding medium and an eigen strain, ε i* , 
imposed to it. Further, the equivalenced inclusion and the spring layer together are again equivalenced to 

another virtual inclusion with an eigen strain, εd
* , as shown in (C). In these process, the macro 

strain-stress relationship of elastic composite with the modeled interfacial spring layer was derived as 
the final form of the composite constitutive law such that, 
               ε0 = Γ :σ0                                         (1) 

           Γ = Γ 1 − f (Γ 1 − Γ 2 ) : B0 + f (Dσ + D* : A0)                   (2) 

Equivalent
=

Γ2
+ εi* + εd*

(A) (B) (C)

Damage Layer Damage Layer

Γ
Self-consistent compliance

Equivalent
=

Equivalenced inclusion Equivalenced inclusion
 and imperfectionImperfected inclusion

Γ Γ

Γ Γ

Fig. 1 Composite with imperfect interface and its equivalent domain 

470
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal



   The BOLD face letters denote vectors or tensors, while (:) means the double inner product. Those 
with subscripts 1 and 2 correspond the matrix and the inclusion materials, respectively. f  is the volume 
fraction of the inclusions. Quantities in the above are defined such that, 
        A0 = [(Γ 2 − Γ )−1 − E 0 : (I ⊗ I + D*)]−1 : (I ⊗ I + E 0 : Dσ )           (3) 

          B0 = I ⊗ I + E 0 : [ (I ⊗ I + D*) : A0 + Dσ ]                    (4) 

           E 0 = E : (S − I ⊗ I)                                      (5) 

where, S  stands for the Eshelby tensor for the average composite. 
   The damage tensor Dσ  is due to the external loading; the nonzero components of the tensor will be 
described such that, 
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   While, the other tensor D*  represents the damage due to the assignment of the eigen strain ε i*  to 
the equivalent core inclusion, and will be given by, 
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In the above, the material parameters are defined in the following. 
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           P = 3p1p2 + knp2 p3 + p3 p1 + 12                       (14) 

           p1 = k + n , p2 = t + κ1, p3 = tκ2 +1                  (15) 

where, n  and k  are normal and tangential spring coefficients, respectively. 
   The normal and the tangential stresses on the interface are defined in relation to the displacement 

: for plane stress

: for plane strain
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gaps between the matrix and the inclusions across the interface that, 

           σ rr(a,θ) =
nµ1

a
∆ur (a,θ)            (16) 

           σ rθ (a,θ ) =
kµ1

a
∆uθ (a,θ)            (17) 

where a denotes a particle diameter. The condition, 0=k  and 
∞=n , represents the perfect sliding with no delamination, and 
∞=k  and ∞=n  corresponds to the perfectly bonded 

interface.  
Results 

   Present model with the inclusion interface imperfection is 
numerically checked for its behavior and reliability to serve as a 
constitutive law. For this purpose, a finite element analysis of a 
representative two-dimensional composite domain was 
performed with the same material condition. The self-consistent 
condition assumed in the above model was accounted for by assigning a periodic boundary conditions in 
the finite element analysis. The following case of matrix and incblusion material properties is 
considered : 

   Young’s modulus   :   GPaE 0.21 =  (Matrix)   GPaE 0.402 =  (Inclusion)   

   Poisson’s ratio    :   ν1 = 0.35      (Matrix)   ν 2 = 0.18    (Inclusion)   

   Figure 3 shows the calculated results(denoted by 
SCC) from the present model compared with those by 
the finite element results, for various cases of volume 
fraction of the inclusion with its interfacial conditions. 
In the present FEM, the normal and the tangential 
springs are also modeled around the each inclusion 
particle. Several cases of inclusion volume fraction were 
computed for each conditions.  
   For the perfect interface condition, in general, a good 
agreement of the present model compared with the FEM 
results is seen to be preserved. Lesser accurate 
FEM-results observed in the higher volume fraction 
region maybe due to the interaction among inclusions, 
which probably are not fine enough.  Since the rigidity 
of the inclusion is 20 times greater than that of the 
matrix, the composite rigidity rises rapidly for 
increasing volume fraction. 
   Results of the perfect debonding with no sliding are 
shown in green symbols providing reasonable 
agreements with the corresponding FEM results. Very significant drop of Young’s modulus from the 
perfect inclusion case is recognized. In both the results, the global Young’s modulus decrease as the 
volume fraction increase, showing the fact that the effect of the debonding on the interface is far greater 
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than that of the reinforcement due to adding the stiffer inclusions. 
   Results of the perfect sliding with no debonding does not seem exhibiting much variation for the 
volume fraction change, however the effect of sliding itself on the rigidity is noteworthy as recognizing 

the fall of Young’s modulus from the perfectly bonded results.  Reason for the discrepancies between 
the present sliding results and those of the FEM could be in the modeling of the spring in the FEM; 
spring elements are located at each node unlike in the present SCC model, where the continuous spring 
layer is located. 
   Tested in the numerical analysis was the effect of the spring stiffness on the global composite material 
characteristics.  Figures 4 and 5 show the Young’s modulus of the composite for varied spring power 
coefficient, respectively for the cases sliding only and debonding only while the other spring coefficients 
are kept significantly stiffer. In both the figures, Young’s modulus varies only in the range where the 
spring stiffness is comparable with those of the matrix or the inclusion materials; in other ranges it shows 
no variation, i.e. almost the perfect bonding is secured when the power coefficient is greater than 12, 
while the perfect sliding or debonding is performed when smaller than 8 or 9 for all the rigidity ratio, 
E2/E1.  
   In sliding case presented in Figure 4, as it was seen in the previous figure also, correlation between 
the present model and the FEM results is not that excellent in quantity, but their behaviors are alike, and 
the drop of the stiffness is significant. Thus, the effect of the particle surface sliding is proven to be great 
even though there is no accompanied delamination on the surface. This sliding effect of the global 
composite behavior would suggest a possible explanation to a super plastic material characteristics in 
highly ductile metals, for which crystal grain slipping at the boundary is considered to be responsible. 
   Shown in Figure 6 is the results of the SCC and the FEM on the global Poisson’s ratio. When the 
spring is sufficiently stiff, for both the ‘Slide only’ and the ‘debond only’, the global Poisson’s ratio 
converges to the value around 3.0, which is the mixed average of the matrix and the inclusion materials. 
Again, in the range where the spring stiffness is comparable with those of the matrix or the inclusion 
material, the global Poisson’s ratio varies meaningfully. It is noted that the Poisson’s ratio for the ‘slide 
only’ rises as the sliding spring becomes softer, providing rather like plastic nature even with no plastic 
deformations assumed nor occurring in either the matrix or the inclusions. 
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Fig. 4 Global Young’s modulus  
     due to sliding 

Fig. 5 Global Young’s modulus 
    due to debonding
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   For the ‘debond only’ case, Poisson’s ratio drops radically when the radial surface spring gets softer; 
the values of Poisson’s ratio become even below zero when it is sufficiently soft. This rather peculiar 
results seem unreasonable, being suspected involving some errors in the model. But totally independent 
FEM results also provide similar results with negative Poisson’s ratio as well. This is because the 
problem setting of the ‘debond only’ prohibits sliding, allowing only radial expansion, which would be 
unnatural but possible, 
though, to generate a special 
material with the negative 
Poisson’s ratio. 

Conclusions 
   A constitutive model for a 
composite of dispersed 
particles is developed, on 
which imperfections of the 
particle interface is modeled 
by employing a spring layer 
with both sliding and the 
debonding deformations. The 
imperfection is modeled with 
the use of Gao’s stress 
function solutions for the 
spring layer between the 
particle and the matrix. 
Especially, a present double equivalent inlucion modeling enabled the use of the Gao’s solution to the 
Eshelby’s equivalent method. The present model is applicable for both the particle interface degrading 
problem and the surface reinforcing problem of the composite. As to sliding, the present model can be 
extended to model a micro mechanism for a super-plasticity. 
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