
Extending Workflow Systems with QoS Management
Jorge Cardoso1

Summary

As organizations adopt new working models, such as e-commerce, new challenges
arise for workflow management systems (WfMSs). One such challenge is that of quality
of service (QoS) management. A good management of QoS directly impacts the success
of organizations participating in e-commerce activities by better fulfilling customer
expectations and achieving customer satisfaction. In this paper, we discuss the
implementation of a workflow QoS model for the METEOR workflow management
system. We describe the components that have been changed or added, and discuss how
they interact to enable the specification, computation, and monitoring of QoS.

Introduction

Organizations operating in modern markets, such as e-commerce, involve a
systematic design, planning, control, and management of business processes. One
important requirement of these processes is the quality of service (QoS) management.
This requirement is a new challenge for workflow systems. While QoS has been a major
concern for networking, real-time applications, and middleware, few research groups
have concentrated their efforts on enhancing workflow systems to support workflow
quality of service (QoS) capabilities. Most of the research carried out to extend the
functionality of workflow systems QoS has only been done in the time dimension, which
is only one of the dimensions under the QoS umbrella. Furthermore, the solutions and
technologies presented are still preliminary and limited [1].

This paper enumerates and describes the enhancements that need to be made to
workflow management systems to support processes constrained by QoS requirements.
Our work in this area started with the definition of a QoS model for workflows [2]. The
implementation of our QoS model and methodologies has been carried out for the
METEOR system to allow the specification, recording, and computation of QoS [3]. The
support of QoS requires the modification and extension of several workflow system
components, and the development of additional modules.

This paper is structured as follows. We start by briefly describing the METEOR
workflow system and its main architecture. We then present our QoS model and describe
the modifications that have been made to the workflow enactment service to hold the
QoS model. Next, we analyze the implications of each QoS dimension (time, reliability,
and cost) to the workflow system architecture. We describe the modification of existing

1 Departamento de Matemática e Engenharias, Universidade da Madeira, 9000-390 Funchal, Portugal

599

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

components and the creation of new modules that have been developed to support the
workflow QoS management. Finally, the last section presents our conclusions.

Workflow QoS Implementation

The QoS model that we have developed has been implemented for the METEOR
workflow management system. The METEOR project is represented by both a research
system [4], and a suite of commercial systems that provide an open system based, high-
end workflow management solution, as well as an enterprise application integration
infrastructure. The system has been used in prototyping and deploying workflow
applications in various domains, such as bio-informatics, healthcare [5],
telecommunications [6], and defense [7].

Figure 1 describes the components that make up the METEOR system and the
components that have been modified, extended, and created to enable QoS management.
The work discussed in this paper is part of the research system and is not part of any
commercial product yet.

CORBA server, communications,
OS, Hardware, etc.

Schema Level

Workflow Level

Infrastructure Level

A

B

C D

N1 N2 FEA

B

C D

N1 N2 FE

Instance Level

Workflow schema

WfMS
components

Load

Enactment
Service

QoS Model

Time
Reliability

Cost

System
Dimensions

Application
Dimensions

A

B

C D

N1 N2 FE

Builder

A

B

C D

N1 N2 FEA

B

C D

N1 N2 FE

Builder

Workflow

Transitions
Tasks

InstancesQoS

DBLog

Workflow

Transitions
Tasks

InstancesQoS

Workflow

Transitions
Tasks

InstancesQoS

DBLog

Create and Manage
workflow instances

Monitor QoS

Control Flow
Data flow
QoS metrics

Workflow
Instance
QoS Data

uses

uses

uses

RepositoryRepository

uses

Simulation System

Task QOS Estimator

Manager Monitor

Figure 1 – QoS Management Architecture

QoS Model

Quality of service can be characterized along various dimensions. Based on previous
studies and on our experience in the workflow domain, we have constructed a QoS model
composed of three dimensions: time, cost, and reliability.

Time (T) is a common and universal measure of performance. For workflow systems,
task response time can be defined as the total time needed by a task to transform a set of
inputs into outputs. Cost (C) represents the cost associated with the execution of

600

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

workflow tasks. During workflow design, prior to workflow instantiation, and during
workflow execution it is necessary to estimate the cost of the execution to guarantee that
financial plans are followed. Reliability (R) corresponds to the likelihood that a task will
perform when a user demands it; it is a function of the failure rate. The reliability
dimension is a function of the number of times the success state is reached and the
number of times the failure state is reached.

Enactment Service

In METEOR enactment service (ORBWork), task schedulers, task managers, and
tasks are responsible for managing runtime QoS metrics. From the implementation point
of view, we divide the management of the QoS dimensions into two classes: the system
and the application class. The dimensions of the system class are managed by system
components (e.g. a task scheduler), while the dimensions of the applications class are
managed by components dynamically created to support a particular workflow
application (e.g. a task implementation). In our system, the system class includes the time
and reliability dimensions, while the application class includes the cost dimension.

Managing Time

Task response time (T) is composed of two major components: delay time (DT) and
process time (PT). Delay time is further broken down into queuing delay (QD) and setup
delay (SD). This makes the response time of a task t represented as followed:

T(t) = DT(t) + PT(t) = QD(t) + SD(t) + PT(t) (1)

To efficiently manage the time dimension, workflow systems must register values for
each of the functions involved in the calculation of task response time (T). The time
dimension has its values set according to the task structure illustrated in Figure 2.

Figure 2 – Revised task structure (extended from [8])

Each state has been mapped to one of the functions that compose the time dimension.
METEOR system follows this task structure to represent workflow task execution

Failed/aborted

Done/Commit
Initial ExecutingPre-Init

Task Reliability

Processing
Time

Task Response Time

Queuing
Delay

Synchronization
Delay

601

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

behavior [8]. To more effectively support QoS management, the original structure has
been extended, with the inclusion of the Pre-Init state, as shown in Figure 2.

The synchronization delay time is calculated based on the difference between the
time registered when a task leaves the pre-init state and the time registered when it enters
the state. A task t remains in the pre-init state as long as its task scheduler is waiting for
another transition to be enabled in order to place the task into an initial state. This only
happens with synchronization tasks, i.e. and-join tasks [9], since they need to wait until
all their incoming transitions are enabled before continuing to the next state. For all other
types of input and output logic (xor-split, xor-join, and-split) the synchronization delay
time is set to zero.

As for the synchronization delay time, the queuing time is the difference between the
time a task leaves and enters the initial state. A task in the initial state indicates that the
task is in a queue waiting to be scheduled (by its task scheduler). Task schedulers treat
their queues with a FIFO policy. One interesting queuing policy variation is associated
with the scheduling of human-tasks. For a human-task instance, being in the initial state
means that the task has been placed in a worklist for human processing. A user can select
any human-task in a worklist, as long as the user role matches the task role. In this case,
the queuing policy is SIRO (Serve In Random Order). Depending on the workflow
system, other useful queuing policies can be used, such as priority queues. When a task
instance enters a queue a time-stamp is attached to it. When the task is removed from the
queue for scheduling, another time-stamp is attached to it so that the total queuing time
can be calculated later. When a task is ready to be executed it transits to the executing
state. As with the previous calculations, the time a task remains in this state corresponds
to the processing time.

Managing Reliability

During a task realization, a number of undesirable events may occur. Depending on
the successful or unsuccessful execution of a task, it can be placed in the done or fail state
(for non-transactional tasks) and commit or abort (for transactional tasks). The former
state indicates that the task execution was unsuccessful, while the latter state indicates
that a task is executed successfully [8].

When an undesirable event occurs, an exception is generated. An exception is viewed
as an occurrence of some abnormal event that the underlying workflow management
system can detect and react to. If an exception occurs during the invocation of a task
realization, its task enters the fail/abort state. In our implementation, it is the
responsibility of task schedulers to identify the final state of a task execution in order to
subsequently set the reliability dimension. Later this information is used to compute the
failure rate, which is a function between the number of times the failed/aborted state is
reached and the number of times state done/committed is reached. To describe task
reliability we follow a discrete-time modeling approach. Discrete-time models are

602

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

adequate for systems that respond to occasional demands such as database systems. We
use the stable reliability model proposed by Nelson [10], for which the reliability of a
task t is,

R(t) = 1 - failure rate (2)

Managing Cost

When a task is ready to execute, a task scheduler activates an associated task
manager. The task manager oversees the execution of the task itself. Task managers are
implemented as an object and are classified as transactional or non-transactional,
depending on the task managed. Human tasks do not have an associated task manager.

Once activated, the task manager stays active until the task itself completes. Once the
task has completed or terminated prematurely with a fault, the task manager notifies its
task scheduler. The task manager is responsible for creating and initializing a QoS cost
data structure from QoS specifications for the task overseen. When the supervised task
starts its execution, the data structure is transferred to it. If the task is a non-transactional
one (typically performed by a computer program), a set of methods is available to
programmatically manage the initial QoS estimates. Once the task completes its
execution, the QoS data structure is transferred back to the task manager, and later from
the task manager to the task scheduler.

In the case of human tasks (performed directly by end-users), the QoS specifications
for the cost dimension is included in interface page(s) (as HTML templates) presented to
the end-user. When executing a human task, the user can directly set the cost dimension
to values reflecting how the task was carried out. As mentioned previously, human-tasks
do not have a task manager associated with them, and therefore a specific task scheduler
is responsible for the task supervision. When the task completes its realization, the task
scheduler parses the interface page(s) and retrieves the new QoS metrics that the user
may have modified.

Conclusions

The use of workflow systems to manage, improve, and re-engineer business
processes enables organizations to reduce costs and increase efficiency. While quality of
service (QoS) management is of a high importance to organizations, current WfMSs and
workflow applications do not provide full solutions to support QoS.

In this paper we explain how to implement a QoS model to a sophisticated workflow
management system (the METEOR system) to enable the QoS management of processes.
The support of QoS management requires the modification and extension of several
workflow system components, including the enactment system, task schedulers, task
managers, and the task model.

603

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

Reference

1. Eder, J., Panagos, E., Pozewaunig, H., and Rabinovich, M. (1999): Time
Management in Workflow Systems. in BIS'99 3rd International Conference on
Business Information Systems. Poznan, Poland: W. Abramowicz and M.E.
Orlowska, Springer Verlag. p. 265-280

2. Cardoso, J., Sheth, A., and Miller, J. (2002): Workflow Quality of Service. in
International Conference on Enterprise Integration and Modeling Technology
and International Enterprise Modeling Conference (ICEIMT/IEMC’02).
Valencia, Spain, Kluwer Publishers

3. Cardoso, J. (2002): Quality of Service and Semantic Composition of Workflows,
in Department of Computer Science. Ph.D. Dissertation, University of Georgia:
Athens, GA. p 215.

4. METEOR (2004): METEOR (Managing End-To-End OpeRations) Project Home
Page, LSDIS Lab. http://lsdis.cs.uga.edu/proj/meteor/meteor.html

5. Anyanwu, K., Sheth, A., Cardoso, J., Miller, J.A., and Kochut, K.J. (2003):
Healthcare Enterprise Process Development and Integration. Journal of Research
and Practice in Information Technology, Special Issue in Health Knowledge
Management, 35(2): p. 83-98.

6. Luo, Z. (2000): Knowledge Sharing, Coordinated Exception Handling, and
Intelligent Problem Solving to Support Cross-Organizational Business
Processes, in Department of Computer Science. Ph.D. Dissertation, University of
Georgia: Athens, GA. p 171.

7. Kang, M.H., Froscher, J.N., Sheth, A.P., Kochut, K.J., and Miller, J.A. (1999): A
Multilevel Secure Workflow Management System. in Proceedings of the 11th
Conference on Advanced Information Systems Engineering. Heidelberg,
Germany: M. Jarke and A. Oberweis, Springer-Verlag. p. 271-285

8. Krishnakumar, N. and Sheth, A. (1995): Managing Heterogeneous Multi-system
Tasks to Support Enterprise-wide Operations. Distributed and Parallel
Databases Journal, 3(2): p. 155-186.

9. Kochut, K.J. (1999): METEOR Model version 3. Large Scale Distributed
Information Systems Lab, Department of Computer Science, University of
Georgia: Athens, GA.

10. Nelson, E.C. (1973): A Statistical Basis for Software Reliability. TRW Software
Series.

604

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

