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Summary 

This paper proposes the analysis of the frictionless unilateral contact between two 
elastic bodies subjected to known external actions. The passage from the contact to the 
disjunction condition and vice-versa are analyzed through the introduction of a weighted 
value of the cohesion and of the distance in accordance with a strategy involving a 
symmetric boundary element formulation. The applications use the karnak.sGbem 
program made by some of the present authors. 

Introduction 

Elastic analysis of unilateral contact problems between elastic bodies and rigid 
obstacles or between (non-penetrable) elastic bodies has been of great interest in the last 
few decades. The pioneering work of Signorini and Fichera treated the theoretical aspects 
of this problem with mathematical rigour, whereas for practical purposes several 
numerical approaches dealing with the Finite Element Method have proved meaningful 
whether through iterative trial and error techniques or solving this problem directly as a 
linear complementary problem or as a mathematical programming problem. Subsequently 
these contact problems have been dealt with from a numerical point of view via 
Boundary Integral Equations mainly by the collocation approach through utilising a 
variation formulation or variation inequalities. Interest in the employment of the 
boundary element method arises either because the contact surface is on the body 
boundary, the natural site of the variables governing such a method, or as a consequence 
of the reduction in the problem dimension which for a plane body changes from two to 
one. The conventional direct BEM is characterised by lack of symmetry and sign 
definiteness of the matricial operators and exhibit drawbacks such as the absence of 
suitable variational principles for a consistent BE discretization and the lack of 
convergence criteria for step-by-step analysis.  

The present paper aims to solve the unilateral contact problem between elastic bodies 
having different physical and geometrical characteristics by utilising the Symmetric 
Boundary Element Method (SBEM) through the trial and error iterative technique. The 
analysis will examine case of simple contact, i.e. slippingless and frictionless. The 
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possibility of subdividing the body into boundary elements (B-elements) having physical 
and geometrical characteristics differing from one another permits one to apply such a 
method with a very large advantage especially when the contact problem exclusively 
regards one or more contact zones having limited dimension. Indeed, in this case the 
algebraic operators, referred to the B-elements not involved in the contact problem, 
remain the same, and only those operators of the B-elements including the contact zones 
and the load vector change. The paper will show the theoretical aspects of the problems 
of simple unilateral contact and will apply the formulation to some meaningful examples 
by using the Karnak-SBEM programme developed by some of the present authors. This 
programme, based on the symmetric formulation of the BEM, actually permits one in a 
substructuring process to evaluate the elastic response (displacements, stresses, tractions) 
of the structure subjected to external actions like body forces and imposed thermal-like 
strains, both in the domain, to imposed displacements on the constrained boundary and to 
forces on the free boundary. 

 

Unilateral contact boundary conditions 

Let us assign two elastic solids A and B coming into contact with one another, each 
having the boundary subdivided into a free portion, the remaining portion connected to 
another solid. Each body is subjected to forces 2f  on 2Γ , to assigned displacements 1u  
on 1Γ  and body forces b  and volumetric distorsions ϑ , both in Ω . Between two solids 
the tangential mutual force may take on very high values without the limit friction force 
being overcome: in this case it is not possible to have a slip between the mutual surfaces 
in contact. 

Let the system formed by two solids in contact, referred to cartesian axes 
)x(x 21,x ≡ , be subdivided into two bodies A and B both called bem-elements. Let the 

solids be embedded in their infinite domain, each having the same characteristics as A 
and B. In Figs. 1 b, c the domains AΩ  and BΩ  are shown and so are the boundaries AΓ , 

BΓ  and +ΓA , +ΓB , the latter being the boundaries of the complementary domains 
AA ΩΩ∞ \  and BB ΩΩ∞ \ . With reference to the local axes (n, s), defined on each 

boundary, the following vectors are considered: 
 

II
s

II
n

I uu snu +=                  II
s

II
n

I tt snt +=                with I = A, B (1a, b) 
 

where un, us and tn ,ts are the components of the displacements of Γ  and of the tractions 
acting on Γ , in the n and s directions. 

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

190

Proceedings of the International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal



   

Γ1
B

b,

f

f

u

θ

B
Γc

B

Γ2
B

Γ2

2

2

1

A

A
Γc

AΓ1
A

b,θ

a)
     

Ω 8 Ω 8

b,θ

Γ2
A

A
Γc

A
Γ1

A

Γ1
B

B
Γc

B

Γ2
B

b,θ

s
n s

n

f2

f2

u1

b) c)

 

Fig.1: a) Elastic solids A and B in contact; b, c) Domains AΩ  and BΩ  embedded in their 
infinite domain. 

If we denote by h the distance, measured along the normal nA, between two points on 
A
cΓ  and B

cΓ  which will touch and by c the value of the possible cohesion existing 
between the bodies in contact, the (linearized) unilateral contact boundary conditions read 

 

A A B( ) h 0n u u− − ≤%  detachment conditions (2a) 
 

0≤− cAA tn~  contact conditions (2b) 
 

A A B A A[ h ] [ c] 0n (u u )  n t− − − =% %  complementarity conditions (2c) 
 

where the symbol tilde means the transposition of the vector or matrix. In the latter 
equations uA and tA mean the displacements and the tractions on the boundary A

c
A Γ∪Γ2  

of AΩ , and the same applies to uB and tB. 

These equations lead to the classic unilateral contact problem between the two bodies 
and are valid both for all the points on cΓ  with c>0 and h=0, and for those on A

2Γ  and B
2Γ  

with c=0 and h>0. 

In the case examined we assume 
 

AA
c

A
s <t n  
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the constant A being a high enough parameter, thus guaranteing the absence of slip 
between the two bodies. 

Elastic model for each bem-element 

If we assume a bem-element as a reference, we can find a relation connecting the 
unknown boundary quantities to the known quantities on the boundary and to the volume 
actions. This goal is reached when the complementary domain ΩΩ∞ \  of each 
bem-element is unstrained and unstressed. This phenomenon is guaranteed by imposing 
the Diriclet and Neumann conditions 

 

0u =+
1       on +Γ1 , 0t =+

2       on +Γ2  (3a,b) 
 

and both the conditions on the contact boundary 
 

0u =+
c , 0t =+

c       on +Γc  (3c,d) 
 

When we introduce the Somigliana Identities of the displacements and of the 
tractions, the following boundary integral equations can be obtained: 

 

0GbG)u(GfG)u(GfGu =ϑ++−++−+≡ ∫∫∫∫∫∫ Ω σΩΓΓΓΓ

+
uuucutcuuutuu

cc
211

21

 (4a) 

 

0GbG)u(GfG)u(GfGt =ϑ++−++−+≡ ∫∫∫∫∫∫ Ω σΩΓΓΓΓ

+
ttucttctutttu

cc
212

21

 (4b) 
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where the small circle appearing in the integrals defines these integrals as the Cauchy 
Principal Value (CPV), whereas the terms ½ uc and ½ fc are the free terms. 

If in the latter two equations the terms uc and fc are added on both sides of the 
equations, one obtains: 

 

ϑ++

+−++−+=

∫∫
∫∫∫∫

Ω σΩ

ΓΓΓΓ

uuu

ccutcuuutuuc
cc

GbG    

u)u(GfG)u(GfGu
2
1

21
21  (5a) 

 

ϑ++−+++−+= ∫∫∫∫∫∫ Ω σΩΓΓΓΓ ttucttcctutttuc
cc

GbG)u(GffG)u(GfGf
2
1

21
21

 (5b) 

 

where we note that the equations are not identically null as in eqs. (4c,d), but equal to uc 
and fc and where the sign of the free terms changes. 

The same eqs. (4a,b) and (5a,b) can be written symbolically in the following way: 
 

0 ,buu ,f ,u ,fuu =ϑ+−−≡ +++ ][][ cc 12111 ˆ  (6a) 
 

0 ,btu ,f ,u ,ftt =ϑ+−−≡ +++ ][][ cc 22122
ˆ  (6b) 

 

][][ ccccc ϑ+−−=  ,buu ,f ,u ,fuu ˆ21   (6c) 
 

][][ ccccc ϑ+−−=  ,bfu ,f ,u ,fff ˆ
21   (6d) 

 

Let us introduce the boundary discretization into the boundary elements by making 
the following modelling: 

 

,Ff 11 fΨ=  ,Uu 22 uΨ=  ,Ff cfc Ψ=  cuc Uu Ψ=  (7a,d) 
 

and let us perform the weighting of the quantities defining the boundaries through the 
same shape functions as those of the response modelling, but employed in an 
energetically dual way, so obtaining the following block system 
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where the terms fcuc ,A  and ucfc ,A  include the CPV integrals and the corresponding free 
terms. 

Eq. (8) can be expressed in extended form in the following way: 
 

UXAAX0 ˆ++= cc    (9a) 
 

cccc
T
cc UXAXAZ ˆ++=    (9b) 

 

where the vectors X and Xc collect the boundary quantities (F1 and U2) and the contact 
zone quantities (Fc and Uc) respectively, whereas Zc collects the weighted quantities 
(displacement Wc and traction Pc) on the same contact zone. 

 By performing a variable condensation through the replacement of the X vector 
extracted from eq. (9a) into eq. (9b), we obtain the following equation: 

 

)UAAU()XAAA(AZ c
T
cccc

T
cccc

ˆˆ 11 −− −+−=   (10) 
 

which can be expressed in extended form as follows: 
 

ccfcuccucucc W)U(DFDW ˆ
,, +−+=    (11a) 

 

ccfcfccucfcc P)U(DFDP ˆ
,, +−+=    (11b) 

 

with obvious symbol meaning. 
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The latter equations relate the quantities defined on the single boundary cΓ  
(displacements and tractions, both weighted) to the forces acting on the nodes and to the 
displacements of the same nodes and to the load terms, also. 

Elastic analysis 

For every bem-element, equations like eqs.(11) can be written, i.e. 
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,,  for body A (12a,b) 
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B
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B
c
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B
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,,  for body B (13a,b) 

 

By imposing the regularity conditions in the nodes of the contact zone, i.e. 
 

B
c

A
cc UUU ==  B

c
A
cc FFF −==   (14a,b) 

 

and the weighted regularity conditions along contact sides, i.e. 
 

B
c

A
c WW =  B

c
A
c PP −=   (15a,b) 

 

we reach the elastic solution Xc trough the following solving equation 

0LX K =+ ˆ
c    (16) 

 

where one sets: 
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The remaining boundary quantities of bodies A and B, containing the reactive forces 
of the constrained nodes and the displacements of the free nodes, i.e. XA and XB, are 
obtainable by using equations like eqs.(9a), written for each of the two bodies. 
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Unilateral contact analysis 

Once the solution vector is computed for each body in terms of nodal quantities on all 
the boundary, then the displacement and traction distributions along the boundary sides 
concerning the unilateral contact phenomenon are easily obtainable through the use of the 
S.I.: 

 

u)U(GFG)U(GFGu ˆ+−++−+= ∫∫∫∫ cuufcfuuuuffuu
c

ΨΨΨΨ
ΓΓΓΓ 121

21  on 2Γ∪Γ c  (18a) 

 

t)U(GFG)U(GFGt ˆ+−++−+= ∫∫∫∫ cuffcffuuffffu
c

ΨΨΨΨ
ΓΓΓΓ 121

21  on 2Γ∪Γ c  (18b) 

where the CPV integrals as well as the free terms are to be introduced when necessary. If, 
for example, we want to evaluate the displacement u2 on 2Γ , the second integral of 
eq.(18a) is considered as the CPV integral and the free term must be introduced. 

In order to reach the unilateral contact conditions in the ambit of the symmetric BEM 
eqs.(2) must be rewritten, but evaluated in weighted form on cΓ  and 2Γ . Explicitly the 
following conditions must be valid: 

 

A A B( )n W W H 0− − ≤%   (19a) 
 

0CPn ≤−AA~   (19b) 
 

A A B A A[ ( ) 0] [ ] 0n W W H n P C− − ≤ − =% %   (19c) 
 

where nA is the external unit vector from the generic boundary element of the body A and 
where the weighting of the displacements and of the tractions was made. In the latter 
equations the terms 

 

h
c

f  H ∫
2Γ∪Γ

= Ψ  c
c

u  C ∫
2Γ∪Γ

= Ψ  (20a,b) 

 

represent the weighted gap vectors between A
2Γ  and B

2Γ  and the weighted value of the 
hypothesized cohesion. The following weighting positions are valid: 

 

A
f

A

c

u W ∫
2Γ∪Γ

= Ψ  B
f

B
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u W ∫
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u
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t P ∫
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The contact conditions between the bodies A and B are evaluated through a step by 
step process: indeed, when the mechanical and thermic distorsion load changes in time, 
the orthogonalities (19) are to be verified. 

Two cases can occur: 

− On the boundary 2Γ  (C=0) eq.(19b) is verified as an equality. The analysis involves 
the inequality (19a) to be violated; as a consequence the interface sides are joined and 
(19b) will be verified as an inequality. 

− On the boundary cΓ  (H = 0) eq.(19a) is verified as an equality. The analysis involves 
the inequality (19b) to be violated; as a consequence the interface sides must be 
separated and (19a) will be verified as an inequality. 

Example 

Let a steel I-pillar, welded to a deliberately thin steel plate, be constrained to a 
concrete block through two bars embedded in the concrete. The plate is in touch with the 
higher zone of the concrete block, also. The tip of the pillar is subjected to the eccentric 
force (M, N). If we assume as external actions M = daN⋅m 10000, N = daN 100000,        
(e = M/N = cm 0.1), it is possible to analyze the contact zone between two bodies by 
verifying the disjunction zone. 

We verified that the contact zone is limited to the bars embedded in the concrete and 
to the zone near to the pillar extremity on the left. A strong compression is found in this 
zone ( yσ = daN/cmq 237), whereas the maximum disjunction on the right of the contact 
zone takes on the value d = cm 0.0314. In Fig. 2b the vertical stress yσ  was evaluated in 
accordance with prefixed lines both inside the concrete and the steel bars, where the 
maximum stress values are shown. Two mappings of the compression and traction stress 
of the concrete are shown in Fig. 2d,e.  

HEB200

260x100x138 concrete block (cm)

1000x200x20 steel plate (mm)

a)

 6mx = - 48.13 

 6mx = 157.68 

 6mx = - 237.26 

6mx = - 53.94

b)
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Fig.2: a) Steel I-pillar and concrete block, b) Vertical stress yσ  at prefixed lines, 
c) Particular regarding the contact and disjunction zones, d,e) Mappings of the 

compression and tractions stress in the concrete. 
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