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ABSTRACT 
The flow past a series of spheres moving through a tube is 
computed using axisymmetric and three-dimensional 
spectral-element methods.  For a specific ratio of sphere to 
tube diameter, and sphere spacing, critical Reynolds 
numbers for conditions of both zero flow relative to the 
spheres, and zero net axial forces on the spheres are 
established.  An axisymmetric Hopf transition to unsteady 
flow is identified, and Landau modelling characterizes the 
instability as occurring through a supercritical bifurcation.  
The variation in key flow parameters with changes in 
diameter ratio and sphere spacing are also established. 

NOMENCLATURE 
DR  diameter ratio 
SR  sphere spacing ratio 
Re  Reynolds number 
V  sphere velocity 
D  tube diameter 
d  sphere diameter 
S  distance between spheres 
ν  kinematic viscosity 
Q  flow rate 
Qrel  flow rate relative to spheres 
P  kinematic pressure 
dP/dz axial kinematic pressure gradient 
FD  drag force acting on each sphere 
u  velocity vector 
uz, ur axial and radial velocity components 
ux, uy, uz Cartesian velocity components 

INTRODUCTION 
Owing to the myriad practical applications of the 
fundamental problem of fluid flowing in a tube containing 
suspended solid bodies, there has been an extensive 
history of analytical (Smythe, 1961 & 1964; Lighthill, 
1968; Fitz-Gerald, 1969), and more recently numerical 
(Tözeren & Skalak, 1978 & 1979; Wang & Parker, 1998; 
Ortega, Bristol & Savas, 1998; Secomb, Hsu & Pries, 
1998 & 2001) attempts to investigate these flows systems. 
The primary motivation for this study is driven by an 
interest in bio-fluid dynamics as it pertains to blood flow 
in narrow vessels such as arterioles, where the scale of red 
blood cells is of the same order as the vessel calibre (inner 
diameter).  Other engineering applications also exist, 
though, including the passage of colloidal solutions 
through narrow orifices and tubes, the flushing of 
obstructions from pipes, and annular flows around 
obstacles. 

The earliest theoretical attempts to tackle the problem of 
the flow past a body in a tube were performed by Smythe 
(1961; 1964), who first developed and subsequently 
revised an analytical solution for the potential flow past a 
single sphere in an infinitely long tube, expressing the 
result as an effective increase in tube length caused by the 
increased pressure drop past the obstruction. 
 

 
Figure 1: Schematic diagram of the system. 
 
Lighthill (1968) derived a model incorporating a viscous 
lubricating layer between body and tube wall for the flow 
past deformable axisymmetric pellets driven by a pressure 
gradient through an elastic tube.  He predicted necking 
behind the body similar in appearance to a peristaltic 
driving force, which suggested the potential for 
misinterpretation of experimental observations of such 
flows.  The work of Lighthill was extended by Fitz-Gerald 
(1969), who considered the deformation of red blood cells 
in the type of flow investigated by Lighthill.  A significant 
finding from that study was the prediction that in vessels 
with calibres in the range 5-7 µm, resistances up to 7 times 
higher than predicted using Poiseuille’s Law and the 
viscosity of whole blood (including plasma, red blood 
cells, and other components). 
The work of Tözeren & Skalak (1978; 1979) was the first 
to study a series of bodies rather than a single body in a 
tube, and again axisymmetry in motion was assumed.  
Important in these studies was the demonstration that the 
zero-net-drag condition, corresponding to the condition at 
which a body would maintain constant velocity in a tube, 
was predicted with greater accuracy than by the model of 
Fitz-Gerald (1969).  Beyond the scope of the present 
study, Tözeren (1983) also investigated the non-
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axisymmetric motion of bodies in a tube.  Pozrikidis 
(2005) gave numerical evidence suggesting that spherical 
bodies tended to migrate towards the tube centreline, 
supporting the validity of the axisymmetric assumption of 
the present study.  In Ortega et al. (1998) evidence was 
found that useful data on flow resistance past multiple 
spheres could be obtained without resorting to the 
expensive task of modelling body and tube compliance, 
and possibly even body compressibility. 
Important contributions to the understanding of the motion 
of red blood cells small through vessels were made by 
Secomb et al. (1998; 2001).  They used a numerical model 
incorporating effects such as the presence of an 
endothelial surface layer and the elasticity of the cell 
membrane to accurately reproduce the deformed cell 
shapes observed experimentally. 
The present study seeks to investigate the fundamental 
problem of pressure-driven flow past an equi-spaced 
series of axisymmetrically positioned spheres moving 
through a tube.  Thus with variation in a Reynolds number 

,
ν

VDRe =  

based on the tube diameter (D), sphere velocity (V) and 
fluid kinematic viscosity (ν), geometric parameters 
including a diameter ratio 

,DR Dd=  
based on the sphere diameter (d) and the tube diameter, a 
spacing ratio 

,SR dS=  
incorporating the sphere spacing (S), and also the imposed 
axial pressure gradient dP/dz, a rich parameter space is 
available for investigation. 
A schematic representation of the system under 
investigation is provided in figure 1.  As well as the 
quantities defined previously, this figure also includes the 
fluid flow rate, Q, through the tube. 

NUMERICAL METHODOLOGY 
In this study both axisymmetric and three-dimensional 
spectral-element computations are performed.  The 
axisymmetric computations are performed on a two-
dimensional mesh of nodal quadrilateral spectral elements 
occupying the meridional half-plane of the computational 
domain in cylindrical coordinates (i.e., mesh occupies the 
z—r plane, and zero gradients in the azimuthal θ direction 
are enforced).  The three-dimensional computations are 
performed on a mesh of nodal hexahedral spectral 
elements encompassing the computational domain.  
Three-dimensional computations are performed in 
Cartesian coordinates. 
In vector form, the incompressible Navier—Stokes 
equations can be written 

,0

,2

=⋅∇

∇+−∇=∇⋅+
∂
∂

u

uuuu νP
t  

where u is the velocity vector, P is the kinematic static 
pressure, and ν is the kinematic viscosity.  In 
axisymmetric computations, the solver takes the operators 
to be of the form 
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and in three-dimensional computations they are treated in 
the form 
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Both of these formulations are implemented through the 
in-house spectral-element software package Viper 
developed by the author G.J.S.  The software exclusively 
employs a nodal-based spectral-element formulation 
(Karniadakis & Sherwin, 2005) with Gauss—Legendre—
Lobatto quadrature used to integrate the weak form of the 
equations over each element. 

Boundary conditions 
In this study periodic velocity boundary conditions are 
employed in the axial direction to efficiently simulate an 
infinite series of equi-spaced spheres moving through a 
tube.  To drive the flow past the spheres, unequal Dirichlet 
conditions were prescribed on each of the periodic 
velocity boundaries.  This constraint was based on the 
assumption that no radial variation in pressure exists at the 
mid-plane between each pair of spheres.  Studies 
employing meshes which included multiple spheres have 
verified that this constraint provides errors in flow rate 
and forces on the spheres of less than 2% for Reynolds 
numbers Re < 200.  On the axis, zero radial velocity and 
pressure gradients are enforced, on the tube wall a 
Dirichlet velocity condition uz = -V is imposed to correctly 
describe the moving sphere condition, and on the surface 
of the sphere, zero velocity is enforced. 
Time integration is performed using a three-step splitting 
scheme based on a backwards-multistep formulation 
(Karniadakis, Israeli & Orszag, 1991; Blackburn & 
Sherwin, 2004), with an appropriate high-order Neumann 
boundary condition for pressure imposed where Dirichlet 
pressure values are not specified. 

Mesh and grid independence 
The axisymmetric mesh employed for this study is shown 
in figure 2.  For much of this study, the parameters 
investigated are SR = 1.0 and DR = 0.6, which is reflected 
in this particular mesh.  The concentration of elements 
towards the mesh boundaries was performed to either 
localize errors due to artificial boundaries (i.e., periodic 
boundaries), or to provide added resolution near regions of 
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higher shear.  Figure 2 reveals both the distribution of 
spectral elements, and the interpolation points within each 
element (here 6th-order elements are employed).  

 

 
Figure 2: Mesh employed for axisymmetric computations.  
Thick lines denote spectral elements, and feint lines 
indicate location of elemental quadrature points. 
 

 
Figure 3: Convergence of flow quantities with increasing 
element order (p-resolution) for the axisymmetric mesh at 
Reynolds numbers Re = 1 (solid lines and symbols) and 
Re = 100 (dashed lines and open symbols).  Circles, 
squares and triangles denote error in flowrate, pressure 
and viscous drag components, respectively. 
 
For the chosen mesh, a grid-independence study was 
performed, with errors in the flow rate relative to the 
spheres, and the pressure and viscous contributions to the 
drag on the spheres being monitored for convergence with 
increasing element order (p-refinement).  The results of 
this analysis are shown in figure 3, where trends showing 
near spectral convergence at moderate resolutions can be 
seen for Reynolds numbers Re = 1 and Re = 100.  The 
convergence is superior at Re = 1, indicating the superior 
validity of the periodic velocity/uniform pressure 
boundary condition on the boundaries on the axial 
extremes of the mesh. 
For three-dimensional computations, a hexahedral mesh 
was carefully constructed to incorporate a similar element 
distribution to the axisymmetric mesh.  The plot in 
figure 4 shows a cutaway view, exposing the sphere 
surface, of the mesh employed for three-dimensional 
computations.  Identical boundary conditions were 
imposed for three-dimensional computations, with the 
exception of the axis boundary condition, which was not 
required in the three-dimensional case. 
 

 
Figure 4: Cutaway of hexahedral mesh employed for 
three-dimensional computations.  Only the lower half of 
the domain (shaded grey) is shown to reveal the boundary 
defining the sphere (shaded black). 

Parameter space 
While this study is motivated by low-Reynolds-number 
applications such as blood flow in narrow vessels, the goal 
is to explore the parameter space in terms of Reynolds 
number and pressure gradient in such a way that a 
description of the flow dynamics will be made for a wide 
range of parameters, ideally encompassing unsteady and 
three-dimensional flow transitions.  Based on existing 
knowledge of similar transitions in sphere wakes, and the 
understanding that with an increase in blockage 
instabilities tend to occur at higher Reynolds numbers, it 
was decided that for a unit kinematic pressure drop across 
the computational tube unit, Reynolds numbers up to and 
including Re = 1000 will be investigated. 
Predominantly, geometric parameter values in the range 
SR = 1.0 and DR = 0.6 are employed, though this study also 
reports on variation of these values over the ranges 
0.2 ≤ SR ≤ 1.8, and 0.1 ≤ DR ≤ 0.9. 

RESULTS 

Flow dynamics for a single geometry 
For the reference system (with geometric parameters 
SR = 1.0 and DR = 0.6, and a unit pressure drop across the 
repeating tube unit), the flow rate relative to the spheres 
(Qrel) was determined for a wide range of Reynolds 
numbers.  Unsteady flow was identified above Re ≈ 730, 
and for unsteady flows the envelope of the computed flow 
rates was monitored.  A plot of the resulting data is shown 
in figure 5, which reveals notable features including a 
transition point between negative and positive flow 
relative to each sphere which occurs at Re ≈ 111.5.  It can 
be seen that in the limit as Re → 0, a minimum relative 
flow rate of Qrel ≈ -0.38 is found.  The gradient at 
Reynolds numbers less than Re ≈ 200 is highly linear, but 
at higher Reynolds numbers the slope becomes slightly 
shallower.  Interestingly, beyond the transition to unsteady 
flow, an almost imperceptible oscillation in flow rates is 
recorded, with the maximum and minimum envelope lines 
almost coincident.  
Important to the motion of spheres free to propagate in a 
pressure-driven flow is the axial force acting on each 
sphere.  If the spheres are exposed to a negative (or drag) 
force, they will decelerate, whereas the opposite is true if 
the net force acts in the direction of flow.  The equilibrium 
position therefore requires that the net axial force is zero.  
Contributions to this axial force were computed from 
surface integrals of axial components of either pressure or 
shear stress on the sphere, and both the components and 
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the total force are plotted for a range of Reynolds numbers 
in figure 6. 
 

 
Figure 5: Flow rate relative to spheres (Qrel) plotted 
against Reynolds number for a geometric configuration 
with SR = 1.0 and DR = 0.6.  Unsteady flow was detected 
in the shaded region, and in this region the envelope of the 
flow rate is plotted. 
 

 
Figure 6: Total drag force (solid lines and “●”) and 
pressure and viscous (dotted lines and “◊” and “∆”, 
respectively) contributions plotted against Reynolds 
number for a geometric configuration with SR = 1.0 and 
DR = 0.6.  Unsteady flow was detected in the shaded 
region, and in this region the envelope of the drag forces 
are plotted.  FD acts in the axial direction. 
 
The axial force trends reveal that the zero net drag 
condition corresponding to the equilibrium position for 
freely suspended spheres occurs at Re ≈ 26.5.  At this 
point the pressure force is positive, and the viscous force 
is negative.  This is in agreement with the relative flow 
rate trend in figure 5, which shows a negative flow rate 
relative to the spheres at the zero-net-drag condition.  
Despite only small variation in the viscous drag envelope 
beyond the transition to unsteady flow, a large oscillation 
in the pressure contribution emerges rapidly.  Notice also 
that the force components all rapidly approach large 

negative values in the limit of low Reynolds numbers.  
This is in agreement with the theoretical analyses 
discussed earlier, where it was shown (e.g., Fitz-Gerald, 
1969) that for physiologically realistic parameters that the 
presence of an obstruction greatly increased the resistance 
to flow. 
 

 
Figure 7: Plots showing collapse of the flow rate relative 
to the spheres (Qrel) and the product of the Reynolds 
number and the net axial force acting on each sphere 
(Re FD) when plotted against the product of the Reynolds 
number and pressure gradient Re dP/dz.  Symbols “□”, 
“■”, “○”, “●”, “∆”, “▲”, “◊” and “♦” represent Re = 0.1, 
0.3, 1, 3, 10, 30, 100 and 200, respectively.  The dotted 
lines are added for guidance to indicate the data which fits 
the universal collapse. 
 
Despite the lack of linearity in the low-Reynolds number 
trend as compared with the flow rate trend in figure 5, the 
axial force data can be found to achieve a linear collapse 
if the data is re-plotted as the product Re FD.  Further 
computations were performed over a range of both axial 
pressure gradients and Reynolds numbers, and it was 
determined that a successful collapse of the data could be 
obtained if it were plotted against the product Re dP/dz.  
These collapses are provided in figure 7, for both the 
relative flow rate and axial force data sets.  In each case 
an excellent collapse is found for small Re dP/dz values, 
though the Qrel data collapse is less successful beyond 
Re dP/dz ≈ 1000. 

Flow dynamics with geometry variation 
The previous results were obtained with the geometric 
parameters fixed at SR = 1.0 and DR = 0.6.  A family of 
consistent meshes were generated to extend this study to 
geometric configurations occupying a range of diameter 
and spacing ratios.  In this case it was necessary to 
prescribe unique pressure drops across each mesh as the 
length of the computational tube unit differed between 
each mesh.  A constant pressure gradient of 
dP/dz = 0.8333 was applied in each case, consistent with 
the pressure gradient resulting from the unit pressure drop 
imposed in the earlier computations.  Simulations were 
performed on each mesh for a Reynolds number Re = 1, 
and a comparative set of contour plots was generated to 
compare the flows with variation in each parameter 
independently.  Figure 8 shows the resulting plots, with 
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the effect of changing either the diameter ratio or the 
spacing ratio denoted by each column.  It is curious to 
observe that with variation in diameter ratio, there is a 
marked alteration in the vorticity distribution surrounding 
the sphere, whereas with variation in spacing, the vorticity 
distribution remains almost unchanged.  This implies that 
at this Reynolds number, the alteration to the otherwise 
uniform flow through the tube is localized to a region very 
close to the sphere obstructing the flow.  It follows, then, 
that almost irrespective of the sphere spacing, each sphere 
will cause a consistent added pressure drop to the flow. 
With increasing diameter ratio a large increase in the 
amount of vorticity surrounding the sphere is created.  
This effect becomes so pronounced that for DR > 0.5 a 
large region of shear is generated along the tube wall, 
becoming stronger as the shear gradients in the fluid layer 
between the wall and the sphere become higher as the gap 
reduces.  
 

 
Figure 8: Contour plots of vorticity in the flow around 
spheres in tubes.  Left: Diameter ratios (top to bottom) 
DR = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 for a 
constant spacing SR = 1.0.  Right: Spacing ratios (top to 
bottom) SR = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6 and 1.8 
for a constant diameter ratio DR = 0.6.  In all cased Re = 1 
and dP/dz = 0.8333.  Blue and red regions correspond to 
negative and positive vorticity, respectively. 
 

Non-axisymmetric flow transition 
The axisymmetric computations reveal that a transition to 
an axisymmetric unsteady flow occurs at Re ≈ 730.  It is 
known, though, that for a single sphere in an otherwise 
undisturbed freestream, the axisymmetric wake bifurcates 
to a non-axisymmetric state through a regular (i.e., steady-
steady) transition at Re = 211 (Ghidersa & Dušek, 2000; 
Thompson, Leweke & Provansal, 2001).  This transition 
occurs far earlier than any theoretical transition of the 
axisymmetric wake to an unsteady state, and significantly 
earlier than the subsequent non-axisymmetric transition to 

unsteady flow found for spheres at Re = 275 (Thompson, 
Leweke & Provansal, 2001; Sheard, Thompson & 
Hourigan, 2003). 
 

 
Figure 9: Iso-surface plot showing the structure of the 
non-axisymmetric flow at Re = 360 with DR = 0.6 and 
SR = 1.0, computed using the three-dimensional solver and 
mesh.  Flow is from top right to bottom left, yellow and 
green contours reveal negative and positive regions of 
streamwise vorticity, respectively.  The sphere is coloured 
blue, and a cutaway of the tube is provided to reveal the 
relevant isosurfaces. 
 
It is reasonable to presume that a similar bifurcation 
scenario exists in this system, where the presence of the 
tube wall can be though of as an extreme blockage, which 
tends to delay transition in flows.  A series of three-
dimensional computations were performed for a range of 
Reynolds numbers lower than the predicted axisymmetric 
transition point to see if non-axisymmetric flow could be 
achieved.  Somewhere in the range 355 < Re < 360, the 
axisymmetric wake was found to transition to a non-
axisymmetric state, producing a steady non-axisymmetric 
wake.  This implies that the first-occurring non-
axisymmetric transition occurs through a regular 
bifurcation.  At slightly higher Reynolds numbers, the 
steady non-axisymmetric wake underwent a subsequent 
transition to unsteady flow.  This second transition occurs 
in the range 360 < Re < 365. 
The steady and unsteady non-axisymmetric wakes 
differed little when visualized – the unsteady flow tended 
to manifest itself as a low-frequency pulsing through the 
flow, rather than adopting the hairpin shedding observed 
behind free spheres (Magarvey & MacLatchy, 1965; 
Johnson & Patel, 1999). 
An isosurface plot of the saturated steady non-
axisymmetric solution at Re = 360 is shown in figure 9.  In 
this plot, the pressure gradient decreases from the top right 
to the bottom left of the tube section displayed, and 
relative to the sphere, the tube wall is moving from the 
bottom left to the top right.  A useful comparison between 
the steady non-axisymmetric wake behind a sphere in 
open flow (Thompson et al., 2001) and the non-
axisymmetric flow shown here can be made.  Both are 
characterised by a counter-rotating pair of streamwise 
vortices, which for a free sphere extend far downstream, 
but in this case the presence of the next sphere 
downstream disrupts the flow and dissipates the vortices.  
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Notably, this non-axisymmetric flow has a net side force 
associated with it, similar to a sphere in open flow.  Thus 
in the applications where the spheres represent particles or 
bodies free to move through the tube, this state would 
cause the spheres to migrate away from the centreline, 
dramatically changing the flow. 

CONCLUSION 
A numerical study employing axisymmetric and three-
dimensional spectral-element computations has 
investigated the pressure-driven flow past an array of 
equi-spaced spheres positioned axisymmetrically in a 
circular tube.  For a fixed diameter and spacing ratio, 
Reynolds numbers at which the zero-net-flow and zero-
net-drag conditions occurred were established.  In 
addition, linear collapses to the relative flow rate data and 
the product of axial force on each sphere and Reynolds 
number were established when plotted against the product 
of Reynolds number and axial pressure gradient. 
Contour plots of vorticity were shown to demonstrate that 
changes in diameter ratio dramatically altered the flow 
surrounding the sphere, whereas for changes in the sphere 
spacing, the effect was barely noticeable.  Finally, a three-
dimensional iso-surface plot of non-axisymmetric 
streamwise vortical structures in the flow local to a single 
repeating tube unit was shown to verify that the 
axisymmetric solution transitioned to a steady non-
axisymmetric flow prior to undergoing an unsteady 
bifurcation of the axisymmetric flow. 
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