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Variation in the critical mass ratio of a freely oscillating cylinder
as a function of Reynolds number
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A two-dimensional numerical investigation of the flow-induced vibration of a circular cylinder held
free to oscillate transverse to the free-stream direction has been performed. The simulations were
performed over a Reynolds number range R&05200 and for an infinite reduced velocity. Two
regions of high amplitude oscillations are observed and are referred to as the viscous and higher
Reynolds number range, respectively. The viscous range was observed fp40R8%5 and the

higher Reynolds number range was observed above Re=180. A critical mass ratio, below which
appreciable amplitude oscillations are observed, is determined as a function of Reynolds number.
For Reynolds numbers between the two ranges, only very small oscillations were observed for all
mass ratios investigated. 8005 American Institute of PhysidDOI: 10.1063/1.1850871

The problem of flow-induced vibration of a rigid bluff cosity 4, and associated free stream velodity. The cylin-
body has generally been considered by studying an elastder is free to oscillate only in the direction transverse to the
cally mounted circular cylinder allowed to oscillate trans-fluid flow. Two governing, nondimensional parameters de-
verse to the fluid flow direction. Classical studies in the fieldscribe the system completely, the Reynolds number, Re
have been restricted to consider only large mass ratio, highly p,,dU../ «, and the cylinder mass ratiop =p/p,,. In this
damped cylinders; several comprehensive reviews exist ostudy, the mass ratio is varied in the range=[0.075,0.8.
this topic (for example, Refs. 193 Generally, for the case of flow-induced vibration, the

Recent study of flow-induced vibration of a cylinder hasreduced velocityl*=U../f,D, where f,=\k/(m+m,), k is
extended the field to incorporate the effect of very low masghe structural restoring force) is the cylinder mass, anti,
ratios and of very low structural damping forcgs. is the added mass, is used as the governing flow field param-

The study of Khalak and Williams8rdemonstrated the eter, in preference to the Reynolds number. However, in this
existence of three oscillation “branches;” the initial, upper,investigation, the structural restoring force is set to zero, and
and lower branch. Of interest is the upper branch, as it exthe reduced velocity is infinitely large for all Reynolds num-
hibits large amplitude oscillations. Khalak and William8on bers and mass ratios considered. For this investigation, the
also demonstrated that the reduced velocity range over whicstructural damping force was also set to zero, to ensure that
significant amplitude oscillations were observed varied inthe damping coefficiend=c/2+k(m+m,) was always at the
versely with mass ratio. This work was extended by Govardiower limiting case of¢=0.
han and Williamsori, and a critical mass ratio was deter- Therefore, for the system studied here, the governing
mined, below which large amplitude oscillations areequations of motion of the freely oscillating cylinder may be
maintained up to an infinite reduced velocity. They deter-simply written in nondimensional form as
mined experimentally a critical mass ratio i, =0.54 for
Reynolds numbers in the range R&600,12 00Q. For cyl- my =C.(t). (1)
inders with mass ratios belom,, they observed large am-
plitude oscillations up to the highest reduced velocity thatHere,y" =y7D/2U? is the normalized cylinder acceleration
could be achieved using their facilities. andC, is the lift force coefficient.

By setting the structural restoring for¢eto zero, it is The flow field is determined by solving the two-
possible to study the case of an infinite reduced velocity, andimensional form of the incompressible Navier—Stokes equa-
this has been achieved both numerically and experimentallyions. A Galerkin spectral-element method is used to dis-
In their experimental study, Govardhan and William%oh-  cretize the spatial domain; this is coupled with a three-step
served high amplitude oscillations fon' <0.54 for Rey- time splitting algorithm to advance the solution forward in
nolds numbers in the range Rp4900,22 000, They also time. The algorithm solves the equations governing the fluid-
interpreted a critical mass ratio of 0.25 for Re=100 from thestructure interaction in a noninertial reference frame, held
results of the numerical study performed by Shielsl” In  fixed relative to the cylinder. The forces acting on the cylin-
this study, we numerically determine the critical mass ratioder are calculated by determining the viscous and pressure
for Reynolds numbers in the range R&8,20Q. components directly from the flow field solution. The

The specific case considered here is that of a circulaNavier—Stokes equations are coupled to the equations of mo-
cylinder of densityp, with diameterd, submerged in a ho- tion through the lift force and the cylinder position is up-
mogeneous Newtonian fluid with densipy,, dynamic vis- dated at each time step using a predictor-corrector technique.
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Details of the predictor-corrector technique have already 04 F———T T T
been described fullj/A full description of the flow-field so- 03F & > D:quo . ]
lution technique is beyond the scope of this paper, however, ook EN %v iR <o ]
details may be found in Thompsaat al® and references % s ® o > e ]
therein. < . SV e ]
The domain chosen for the investigation consists of 518 01rF . A vv,’;, e .
macroelements, an inlet boundary condition 15 diameters up- . by
stream of the cylinder, and an outlé®feumann boundary [
condition 23 diameters downstream of the cylinder; the wall 0.9 1 1.1 1.2 1.3
boundaries on either side of the cylinder are 15 diameters T T
away from the cylinder and have an inlet condition imposed. a v obpa
A rigorous domain study has been performed for the case of 4 v P00
both a stationary and freely oscillating cyIinc?alevealing a . A Tk deex
blockage effect of less than 2% for Re=200. A rigorous mesh ESEF o DAL
independence study was also performed. From the results of " Y T e
this study, eighth order polynomial interpolants were used to o4t - g v N E
discretize the domain within each macroelement. The current 06 F & ot E
numerical scheme has been validated by comparing results 089 1 1 12 1.3
with those of Blackburn and Henders8rat Re=250; the f*

current code reproduced their predictions to within numericaI:IG 1AM - . ,

. . . . .1 plitude of oscillation and mass ratio response as a function of
error.gA full description of the code validation is presented byfequency ratio for Reynolds numbers in the range R@=100; M, Re
Ryan: =40; A, Re=50;V, Re=60;», Re=70; 4, Re=80; ¢, Re=85;®, Re

For each Reynolds number and cylinder mass ratio, th&90: and*, Re=100. Hollow points indicate values wheke> Ay -
simulation is performed until a saturated solution is obtained.
The cylinder position is obtained as a function of time, and
from this information an amplitude of oscillation is calcu- amplitude oscillationsf” increases withA". For a critical
lated. Following Govardhan and Williams8ithe oscillation ~ value of A" (hereafter referred to a8, ;;.,), @ maximum
results are shown in th@\", ") plane wherd” =fo/f, f,ois  value off" is reached. For oscillation amplitudes higher than
the Strouhal shedding frequency from a fixed cylinder &nd this critical valuef* decreases with increasirg. Within the
is the oscillation frequency, an®l' =A/D is the normalized Reynolds number range shown in Fig. 1, increasing the Rey-
amplitude of oscillation taken as half the normalized peaknolds number acts to increase both the range and variation of
to-peak value. By presenting the results in this plane, amplif* as a function ofA". Also apparent is that as the Reynolds
tude information and lock-in information can both be clearlynumber is increased, fewer simulations foult> Aica,
indicated(here lock-in describes a system whéfe:1 and from Fig. 1, this corresponds to the mass ratio at which
the oscillations of the cylinder are synchronized with theA,;;., occurs decreasing with increasing Reynolds number
shedding frequengy Results are also presented in thein this range. Despite the significant difference in Reynolds
(f",m") plane, which clearly shows the effect of a changednumbers when comparing investigations, the current results
mass ratio on the frequency response of the system. are in qualitative agreement with those found experimentally

Figure 1 shows the results for Reynolds numbers in thdy Govardhan and Williamsoh. They found, for A*
range Re$40,10(. Simulations were also performed at <A, the oscillation response was quasiperiodic. By
Re=30, however, cylinder oscillations were not observed atontrast, at these low Reynolds numbers no quasiperiodic
this low Reynolds number. This is in agreement with thestate was observed.

findings of Taneda! who, in his study of the flow past a As the Reynolds number is increased further to Re
fixed cylinder, did not observe global instabilities for Rey- =100, a value of\ ., [i-€., @ turning point in théA”", ")
nolds numbers below Re=35. responsgis not observed for any mass ratio considered. In-

For Re=40, the response was markedly different for alldeed, the amplitude of oscillation is observed to decrease
mass ratios when compared to simulations performed awith decreasing mass ratio. This result is contrary to the
slightly higher Reynolds numbef®e=50,70); the largest findings at all Reynolds numbers less than 100.
amplitude observed beirlg:nax=0.14 form'=0.2 (the low- Figure 2 shows the cylinder oscillation response as the
est mass ratio considered for Re3448iso,f" decreased be- Reynolds number is increased through the range Re
low f*=1 for all mass ratios considered, this is in contrast to=[100,20Q. This figure clearly shows that the findings for
all higher Reynolds numbers considered. Furth®&r,ap- Re=100 presented in the previous figure are not restricted to
proaches zero as’ is increased for Re=40. By contrast, for only the Re=100 case. For Reynolds numbers in the range
higher Reynolds numbe#s” approaches a finite value as Re=100,17Q only small amplitude oscillations were ob-
approaches the maximum value investigated. served(A"=0.1) even for the lowest mass ratio considered

For Reynolds numbers in the range §86,90Q, f">1 (m"=0.079, indeed, within this Reynolds number range, the
for all simulations conducted, indicating that the sheddingamplitude actually decreases slightly with decreasing mass
cycle was locked-in with the oscillating frequency for all ratio. As with simulations performed at lower Reynolds num-
mass ratios considered. For each Reynolds number, for smdikrs, the oscillations observed for Rd60, 200 were syn-

Downloaded 10 Feb 2005 to 130.194.11.75. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



038106-3 Variation in the critical mass ratio Phys. Fluids 17, 038106 (2005)

02— 0-45----.--------------.----:
0.15 f ] oseE Reesy 5
[ o ] 03f o 3
. o1 $ S0 o osf  © .
< :‘:"“‘«?‘. N - &2 o2f 3
0.155- o o -E
0.1 ;' fo) o OO ';
005 ———t———— o 0.05F E
1.1 1.15 1.2 1.25 1.3 ; 3
0'|.|.I||.I.||.I.|||I||||'
T T T LT T T 0 50 100 150 200 250
<« o a ] Re
4 om A [e]
FIG. 3. (O) Maximum oscillation amplitude as a function of Reynolds
* - 282 L 3t i number for cylinder mass ratios in the rangé=[0.075,0.7 and Re
g02 18 40 § =[40,200. (#) Oscillation amplitude results for Shiett al. (Ref. 7) with
! : :.: : .. ] m'=0.16,k=0, c=0, representing the highest oscillation amplitude reported
0.4 F PR N ] for a finitem'".
F 4% m A O 7
O8F w%th%t
.4 15 1.2 1.25 1.3
* A, coincides with the amplitude of oscillation fam'

=0.075, the lowest mass ratio considered. Given the form of

FIG. 2. Amplitude of oscillation and mass ratio response as a function o ; ; * * ; ;
; : eA m  (which may be inferred
frequency ratio for Reynolds numbers in the range R&8,20(; *, Re fthe relatlonshlp betwe and ( y

=100: €. Re=150: ¢, Re=170: M. Re=180:A, Re=190: and®. Re [TOM Figs. 1 and R itis p*robable thah\ ., is slightly greater
=200. Hollow points indicate values whefé>A_ . .. for the limiting case ofm =0 than that presented in Fig. 3.

It should also be noted that for a given Reynolds num-

ber, A, reported here is lower than that reported previously

chronized with the shedding frequency for all mass ratiodor studies performed within the present Reynolds number
considered. range investigatef>>*With the exception of the work by

As the Reynolds number is increased to Re=180, @hielset al.’ the value ofAmaXreported previously was for a
barely perceptible, abrupt increase in the amplltude is notefinite reduced velocity. Experimental wotk, performed at
as the mass ratio is reduced fram=0.1 tom =0.075. This much higher Reynolds numbers, has shown that, rfor
increase is more evident as the Reynolds number is increasedm,, the amplitude of oscillation decreases somewhat at
to 190. As the Reynolds number is further increased to 200an infinite reduced velocity when compared to a finite re-
a marked increase in amplitude is observed for mass ratioduced velocity, but the amplitude is still significantly large.
below m"=0.15. This increase in amplitude is associatedThe numerical study by Shiekst al” at Re=100 shows the
with an increase irfi". For Re=200 am;;., Value appears, same trend. For finite mass ratios, their highest amplitude
coinciding withm'=0.1; form =0.075,f" decreases. Of note recorded wag\'=0.58 atU"=0.71 andm’ =2.5; by contrast,
is that for Re=200 the oscillations exhibited fok" for U" =, they found the highest amplitude of oscillation to
= Agiicas (M =0.1) are quasiperiodic, in agreement with pre- be A"=0.35 form"=0.25, as shown in Fig. 3.
vious findings® Following the definition used in prior studiés critical

From the response characteristics presented in Figs. rhass ratio was calculated for each of the Reynolds numbers
and 2 it is evident that two response ranges exist, which varinvestigated. Here, the critical mass ratio is defined as the
as a function of Reynolds number. The first rand®  highest mass ratio which exhibits synchronized oscillations
=[40,95) is tentatively referred to as the “viscous” range. and for whichA"=A_ ;.- This corresponds to the mass ra-
For these low Reynolds numbers, the viscous componerito at which a jump in the amplitude response is observed.
contributes a significant proportion to the total force actingThis definition allows for the variation in peak amplitude
on a stationary cylindéﬁ The second Reynolds number response as a function of Reynolds number. It also allows for
range is referred to as the “higher” Reynolds number rangea critical mass ratio to be defined even whéfeappears to
beginning at Re=180. The higher Reynolds number rangeincrease smoothly with decreasing. This definition coin-
continues up to the highest Reynolds number considered icides with the definition used previou3lyhat mzm corre-
this study and may continue up to even higher Reynoldsponds to the mass ratio below which significant amplitude
numbers. oscillations are observed up to and includidg.

Figure 3 shows the maximum peak amplitude response  Figure 4 shows the calculated valuemy,, as a function
obtained for each Reynolds number investigated. This figuref Reynolds number. Note that a critical mass ratio is not
clearly shows the two response ranges as regions whiere  defined in the range R€£00,17@, as no jump inA” was
is significant. Also shown for comparison is the response obbserved below any specific mass ratio for all values consid-
Shielset al.” for Re=100 andn’=0.16; this amplitude re- ered. It is possible that in this Reynolds number range, a
sponse was the highest they obtained for a fimfeand critical mass ratio less tharncrlt 0.075 exists. Also shown is
compares favorably with the present results. the value ofm,,;, determined by Govardhan and William&on

In both the viscous and higher Reynolds number rangeof m.,=0.25 for Re=100(determined from the numerical
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