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The creation of vortex pairs occurs in a range of industries, including mixing, transport, and
plastic moulding. In particular, vortex pairs are observed in the wake of aircraft, and are the
cause of a significant hazard in the aviation industry. Instabilities, which grow on vortex
pairs, have the potential to lead to enhanced dissipation, thus limiting this safety concern,
in addition to enhancing mixing in chemical engineering industries. To date research has
mostly considered instabilities growing on a vortex pair where each vortex has the same
magnitude of circulation. However, in practice it is unusual to have an equal-strength vor-
tex pair. This investigation is the first to consider the instability modes that may develop on
a Lamb–Oseen vortex pair of arbitrary circulation ratio. We find a significant change in the
growth rates of all instability modes reported previously for an equal-strength vortex pair.
All simulations employ an accurate spectral-element method to discretise the domain cou-
pled with a three-step time splitting scheme. A wide range of instability wavelengths is
considered to ensure that all instability modes are captured. By identifying and enhancing
the leading instability modes, we are able to enhance the dissipation of the vortex pair.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The stability of vortex pairs to linear perturbations have been the subject of intense study for several decades, due largely
to the application of these findings in the enhanced dissipation of aircraft wakes, and an improvement in our understanding
of the interaction of individual vortex filaments within turbulent flows [1].

Much of this work has concentrated on perturbations growing on vortex pairs where the circulation of each vortex is
equal in magnitude. Leweke and Williamson [2] experimentally considered an equal strength magnitude, counter-rotating
vortex pair, finding both a long-wave (Crow) mode [3] and a short-wave (Kelvin) mode [4], growing on the vortex pair.
Laporte and Corjon [5] revisited the investigation with direct numerical simulations to investigate the interactions between
the Crow and the short-wave instabilities. Both [2,5] found that the interaction of the two instability modes substantially
decreased the time for the vortex pair to dissipate. In particular, the short-wave instability developed cooperatively on both
vortices [2,5]. This ‘‘cooperative” mechanism significantly enhanced the mixing between the vortices, when compared to the
situation with only the Crow instability developing.

The short-wave Kelvin mode is also commonly described as an elliptic instability. The term ‘‘elliptic” describes the vortex
profile when deformed under the strain induced by the other vortex. The elliptic profile is crucial for the vortex to be
susceptible to the growth of three-dimensional, Kelvin type perturbations. Pierrehumbert [6] identified this instability as
a three-dimensional short-wave instability for a simple two-dimensional elliptic inviscid flow, while Bayly [7] provided a
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supporting theoretical framework. This type of short-wave instability was independently observed for a vortex ring by
Widnall and Sullivan [8], and the mechanisms controlling the instability were explained in detail through an analytical mod-
el [9]. The analytical model required knowledge of the internal profile of the vortex to be known. Widnall et al. [9] also
claimed that the same kind of instability could occur in other flow structures (for example a vortex pair). This claim was
supported by Tsai and Widnall [4]. A comprehensive review of elliptic instability theory may be found in [10].

By comparison with equal-strength vortex pairs, relatively little work has considered vortex pairs of unequal circulation
strength. Ortega et al. [11] experimentally considered unequal-strength counter-rotating vortex pairs formed in the wake of
a specific wing planform. The use of their specific wing planform restricted the range of circulation strength ratios they could
consider. They observed several three-dimensional instability modes growing on the vortex cores, however little description
of the modes was provided. [12], following the work of [3,13], developed an analytical model to consider instabilities which
may grow on a vortex pair of unequal strength circulation. However, the model was restricted to consider only large wave-
length, sinuous instabilities, and did not consider the effect that the vortex profile will have on the instability modes that
could form. Comparing their results with [11], several discrepancies were noted, especially where instability modes were
of short wavelength.

Many investigations (for example, [4,14]) have considered the instabilities that may grow on a vortex pair by considering
an isolated vortex immersed within a linear strain field, the strain field being carefully chosen such that it is equivalent to the
presence of a nearby vortex. These investigations have identified a range of Kelvin modes that can alter the profile of the
vortex core. The analytical investigation of [14], who considered an isolated vortex immersed within a strain field, has shown
that the magnitude of strain at the center of a vortex is directly proportional to the instability growth rate. However, findings
using this technique are limited, as the technique assumes that the strain field is vanishingly small and the vortex core re-
mains axi-symmetric and retains a perfectly elliptic profile.

Sipp and Jacquin [15] conducted a linear stability investigation for a counter-rotating vortex pair, of equal-strength vor-
tices. They defined the most unstable mode predicted as the principal mode (�1,1), which was observed in [2,5]. Lacaze et al.
[16] found other Kelvin instability modes, besides the principal mode (�1,1), to be more unstable when an axial component
is added to the baseflow vortex (not considered here). The other dominant Kelvin modes feature a temporally rotating per-
turbation field, and the vortex core is twisted axially into a helical structure. This is in contrast to the sinusoidal stationary
core of a vortex perturbed with the mode (�1,1). The mode shape notation in brackets follows the classic work of [17], who
first described the vibrations of a columnar Rankine vortex and provided the solution for an inviscid flow.

Ref. [18] have shown that counter-rotating unequal-strength vortex pairs typically lead to higher strain rates measured at
the core of the weaker vortex than its counterpart. When the strength difference of the two vortices is extreme, the weaker
vortex undergoes significant deformation and its overall topology becomes a crescent shape. The analytical model of [14]
may not be well applicable to predict the instability in this situation for the weak vortex cannot be well described by an ellip-
tical profile.

In this study, we will consider several pairs of unequal-strength counter-rotating vortices. Key to our investigation is to
identify if the Kelvin modes identified in prior studies grow in our highly deformed vortex cores, or if new instability modes
dominate the flow. These results will have direct application to the aviation field as unequal strength vortex clusters feature
prominently in the wake of an aircraft.

Comparisons between previous analytical solutions and the present work’s numerical findings will be provided to vali-
date the numerical findings. A-priori we may expect that for small K (a ratio of the weak vortex circulation to the strong
vortex circulation), instabilities will grow preferentially on the weaker vortex (due to the increased strain on the vortex).

1.1. Flow field description

In this study two counter-rotating Lamb–Oseen vortices, each of characteristic radius a, are placed a distance b apart as
shown in Fig. 1. Initially, each vortex is defined in isolation with a Lamb–Oseen profile, which has a vorticity field defined as
xaxial ¼
C

pa2
0

e
� r

a0

� �2

; ð1Þ
where C is the circulation of the vortex, a0 is the initial vortex radius, and r is the radial dimension. For all simulations dis-
cussed here the length-scale ratio is initially set to a0/b = 0.25. The circulation strength ratio may be defined as
Fig. 1. Schematic diagram of the vortex pair.
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K ¼ C1

C2
; ð2Þ
where C1 is the circulation of the weaker vortex and C2 is the circulation of the stronger vortex. In this study we have re-
stricted our attention to �0.1 P K P �1.0. The effect of viscosity may be quantified through the Reynolds number Re = C2/m
based on the circulation of the strongest vortex, where m is kinematic viscosity. Viscous effects act to increase the radius of
each vortex core (see, [14] for details); this effect may be approximated to first order through the equation
aðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

0 þ 4m t
q

; ð3Þ
where t is time.
For all simulations, the Reynolds number was set to 20,000, to agree with the previous studies of [14], and to minimize

the impact of viscous radial growth. In addition, the initial core radii are equal for both vortices at the commencement of all
simulations considered in this study. It should be noted that viscous forces will be more dominant in the vicinity of the
weaker vortex, leading the core radius of the weak vortex to grow substantially more than the radius of the strong vortex
at low jKj. The discrepancy in core radii is important as work by Le Dizès and Laporate [14] and Lacaze [16], considering
a single vortex immersed in a strain field, have shown that the instability wavenumber, k should be normalized by core ra-
dius. Under the assumption that instabilities will grow preferentially in the weak vortex, it is this core radius that is most
important. In this investigation we normalize k with the initial vortex core size a0.
1.2. Numerical technique

There are two stages comprising the overall technique. The first stage involves evolving the two-dimensional base flow
field from the initial condition of two superimposed isolated Lamb–Oseen vortices (not a solution of the Navier–Stokes equa-
tions) to a mutually deformed quasi-steady state by solving the incompressible Navier–Stokes equations
@u
@t þ ðu � rÞu ¼ �rpþ mr2u;
r � u ¼ 0;

ð4Þ
where u(x,y, t) is the two-dimensional velocity vector, and p is the kinematic static pressure. This relaxation process, leading
towards the quasi-steady state, has been described in detail for equal strength vortex pairs by Le Dizès and Verga [19] for co-
rotating vortices, and [15] for counter-rotating vortices. More recently, [18,20] have considered the case of jKj– 1. Following
the standard approach for stability analysis of vortex pairs [16], a frozen snapshot of the flow when the vortices have adapted
to each other, serves as a basis for the second stage of the technique (linear stability analysis). This effectively eliminates the
growth of the vortex core through viscous diffusion during the stability analysis.

The growth-rate and mode-shape of linear perturbations acting on the adapted vortex pair are then calculated through
the solution of the linearized Navier–Stokes equations. By freezing the two-dimensional flow field, the perturbation field is
effectively rotating at the same rate as the vortex pair. The rotation rate and center of rotation of the vortex pair may be
calculated analytically (see for example [14]), or through direct measurement, as was the case here. This rotation is ac-
counted for by solving the linearized Navier–Stokes questions in a non-inertial reference frame, fixed to the frozen two-
dimensional field, these equations are defined as:
@u0
@t þ ðUrel � rÞu0 þ ðu0 � rÞUrel ¼ �rp0 þ mr2u0 � 2X� u0;
r � u0 ¼ 0

ð5Þ
where u0(x,y,z, t) and p0(x,y,z, t) are the three-dimensional perturbation velocity and pressure components, and
Urel = (U �X � R) is the relative velocity of the frozen base flow on the non-inertial frame, where X is the self-rotation rate
(which may be approximated as (C1 + C2)/2pb2) and R is the radial distance measured from the instantaneous center of self-
rotation for the two vortices in the base flow. The last term in the first equation of Eq. (5) is the correction for the Coriolis
effect in the non-inertial reference frame. This process assumes the perturbation velocity and pressure terms may be written
in the general form
P0 ¼ bPðx; yÞeikzþir t ; ð6Þ
where P0 represents any of the perturbation components (u0,v0,w0) and p0; bP is the mode shape, k is the wavenumber of the
instability along the axis of the unperturbed vortex pair, and r is the perturbation growth rate. In practice, a normalized
growth rate, r* = r � tc, is considered where
tc ¼
2pb2

jKjC2
; ð7Þ
is the time taken for the strong vortex to travel a distance b along its path. The general perturbation form of Eq. (6) is substi-
tuted into the linearized Navier–Stokes Eq. (5), leading to a sparse-matrix eigenvalue problem. The leading instability mode
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Fig. 2. Instability growth rates for K = 1.0 and a/b = 0.14 at Re = 14000. The dashed line is from the extracted results of [26] and } is computed by the
current code.
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(defined as the mode with the largest growth rate) is calculated using an Implicitly Restarted Arnoldi Method as described by
Sorensen [21].

Spatial discretisation of the domain was achieved using a spectral-element technique, which, through the use of high-or-
der interpolation polynomials, allows highly accurate simulations (as described by Karniadakis et al. [22]). A third-order time
accurate technique was employed to model the solution of the Navier–Stokes equations (see, [22]). This algorithm has pre-
viously been employed to model two-dimensional wake vortex dynamics by Sheard et al. [23]; while the linear stability
analysis algorithm was successfully employed to resolve aspects of the three-dimensional transition of cylinder wakes in
[24,25].

The spatial accuracy was determined at run time by choosing the order of the tensor-product of interpolating polynomials
within each element. In all simulations quoted herein 441 elements, with polynomial of degree 10, were employed and a
non-dimensional time-step, Dt� ¼ Dta2

0=C2
� �

¼ 1=9000p was used. A square domain was considered with a domain length
and width of 100 vortex diameters. The vortex pair was contained within a refined region at the center of the mesh. Away
from this region, the mesh density was reduced to reduce computational expense. This numerical configuration was used
and found to be stable for all simulations in this investigation.

The algorithm employed was further tested by comparison with the findings from a similar investigation by Roy et al.
[26]. The short-wave instability for a co-rotating equal-strength vortex pair (K = 1.0) was considered on a non-inertial ref-
erence frame in the test case. The simulation was conducted with a spatial resolution of both degree 10 and 13 polynomials
on the current mesh. Extracted results from the prior study (Fig. 1 in [26]) are directly compared to the linear stability pre-
diction of the current algorithm in Fig. 2. The non-dimensional growth rate is scaled as 2p2b2r/C and a is estimated with Eq.
(3). Differences of less than 0.1% are found when comparing both the degree 10 and 13 predictions with the results of [26].
This validation demonstrates that the present formulation correctly handles the rotating reference frame of the perturbation
field, and confirms that accurate results are obtained when elements of polynomial degree 10 are used. This resolution is
used for the remainder of this study.
2. Results

A flow field consisting of two circular vortices placed a finite distance apart is not a solution to the Navier–Stokes equa-
tions, and would not be observed experimentally. In order to generate an experimentally valid flow field, the initial flow field
is evolved in two dimensions such that the solution relaxes to a solution of the Navier–Stokes equations. This relaxation pro-
cess is driven by the strain rate within the core of each vortex evolving due to the external strain field generated by the other
vortex, and is an inviscid process. The process has been described in detail for an unequal strength vortex pair in [18].

Fig. 3 shows contours of vorticity for the adapted vortex pair for several values of K. As K ? 0, the weaker vortex becomes
increasingly deformed, and the profile of each vortex is increasingly different to that of the other vortex. [18] has shown that
the time required for the adaptation process to conclude is dependent on K. Table 1 details the average core size of each
vortex for selected values of K at the conclusion of the relaxation process. We note that as jKj? 0, a discrepancy develops
in the relative core sizes. The weaker vortex is stretched under the induced strain of its counterpart (see especially Fig. 3(a)
and (b). This increases the characteristic average core size (computed according to [18,19]).



(a) Λ = −0.1 (b) Λ = −0.3 (c) Λ = −0.7 (d) Λ = −0.9

Fig. 3. Vorticity contour snapshots show vorticity profiles after relaxation. Solid and dashed lines represent positive and negative vorticity, respectively.

Table 1
Vortex core size at the conclusion of the adaptation phase, as a function of K.

K a1/b a1/a0 a2/a0

�0.3 0.2677 1.0958 1.2860
�0.7 0.2731 1.1144 1.1544
�0.9 0.2748 1.1224 1.1317
�1.0 0.2761 1.1258 1.1258

J. So et al. / Applied Mathematical Modelling 35 (2011) 1581–1590 1585
2.1. Three-dimensional instability growth rates

Fig. 4 shows the normalized growth rate, r* of the leading instability mode as a function of the normalized wavenumber,
ka0, for K = �0.9. Four dominant instability modes have been identified. At low wavenumbers, the Crow instability is ob-
served at ka0 � 0.1, in close agreement with the analytical findings of [12]. The normalized growth rate is slightly lower than
their findings due to the effect of viscosity (not accounted for in their model). The next mode is an oscillatory mode with a
peak at ka0 � 1.1. This mode has been identified in [27] for a K = �1.0 vortex pair and is characterized by a temporally oscil-
lating perturbation field, that is contributed by the first solution branch of Kelvin mode (�2,0).

Two further instability modes are also observed at higher wavenumbers, the first, with a peak at ka0 = 2.1, is identified as
the first solution branch of Kelvin mode (�1,1). The second, with a peak at ka0 = 3.55, is identified as the second solution
branch of Kelvin mode (�1,1). When comparing these results with [14], we find that both the peak growth rate for each
mode, and the wavenumber at which this occurs, are very similar to the case of K = �1.0. The numerical result of the most
unstable Kelvin mode is also directly compared with the theoretical prediction, based on the model of [14], for the weaker
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Fig. 4. Normalized instability growth rate as a function of ka0 for K = �0.9. Symbols indicate different mode-shapes; s Crow instability; 5 Kelvin mode
(�2,0,1); } Kelvin mode (�1,1,1); h Kelvin mode (�1,1,2). Solid line is predicted by the analytical model of [14] for the weak vortex.
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vortex. Excellent agreement is achieved for the instability bandwidth and the peak growth rate. Both Kelvin (�1,1) modes
have substantially higher growth rates than the Crow instability or the Kelvin (�2,0,1) mode, and should dominate the flow
experimentally. However, both the instability types (Crow instability and the Kelvin modes (�1,1)) may be observed con-
currently under experimental conditions [2] due to the large discrepancy in the their critical wavelengths.

Fig. 5 shows the instability growth rates for K = �0.7. All four modes identified for K = �0.9 are observed once again. The
growth rate and the critical axial wavenumber of the most unstable Kelvin mode remains in good agreement with the the-
oretical prediction. The Crow instability is found to have a higher growth rate (compared to K = �0.9), with a peak growth
rate occurring at a higher wavenumber, in agreement with the findings of [12]. In this case, the Kelvin mode (�2,0,1) also
has a higher growth rate (and a higher critical wavenumber). However, its peak growth rate is far less than all other insta-
bility modes observed. The Kelvin mode instabilities of (�1,1) are also observed to have peak growth rates occurring at high-
er wavenumbers when compared with K = �0.9. However, their peak growth rates are reduced when compared with
K = �0.9. This trend is continued as the circulation strength ratio magnitude is further reduced to K = �0.3 (Fig. 6). In this
case, only the Crow instability and the first branch of the Kelvin mode (�1,1,1) are observed as the principal leading modes
across the range of wavenumbers considered. The oscillatory mode is also identified but is now a secondary mode. Here, the
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Fig. 5. Normalized instability growth rate as a function of ka0 for K = �0.7. Symbols and the line are as per Fig. 3.
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Fig. 6. Normalized instability growth rate as a function of ka0 for K = �0.3. Symbols and the line are as per Fig. 3.
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Crow instability peak growth rate has increased to the point where it is comparable to that of the Kelvin mode (�1,1,1). The
range of wavenumbers over which the Kelvin mode (�1,1,1) has a significant growth rate is observed to be much broader
than that observed at higher magnitudes of K. The theoretical model of [14] fails to provide reasonable predictions at higher
wavenumbers. It is presumed that this is most likely due to the finite small strain assumption in the model and the extre-
mely deformed weak vortex observed as K ? 0 (Fig. 2(a) and (b)).

Two summary figures are provided as Fig. 7 showing the magnitude and the critical wavenumber of the peak growth
rates, both as a functon of K. The Kelvin instability mode (�1,1,1) is observed to reduce in growth rate as K ? 0
(Fig. 7(a)), and is observed to have an increase in the normalized critical wavenumber (Fig. 7(b)). This is counter-intuitive,
as the core radii of the weak vortex is greater as jKj? 0. Therefore it is concluded that the increase in normalized mode
wavenumber as jKj? 0 is due to the increasing strain acting on the weak vortex profile as observed in Fig. 2. By contrast,
the long wave-length, Crow instability displays an increase in growth rate as K decreases. This mode becomes more dom-
inant than the Kelvin mode (�1,1,1) at K � �0.25 and reaches a peak growth at K � �0.15, before decreasing in growth rate.
In line with the short wave-length Kelvin modes, the Crow instability also exhibits an increase in normalized wavenumber
with decreasing K. When K < �0.2, the Crow instability remains the only leading instability found. The Kelvin mode
(�2,0,1) exhibits an increase in the peak growth rate as jKj? 0, in additional to an increase in the critical wavenumber.
The growth rate of the Kelvin mode (�2,0,1) reaches its maximum at K � �0.15 and decreases afterward, in line with
the Crow instability. Logically, the growth rate of both the Crow instability and the Kelvin mode (�2,0,1) is expected to drop
towards zero as jKj? 0, representing the case of a single, isolated vortex.

The mode shapes for each instability, calculated at the normalized wavenumber corresponding to maximum growth, are
shown in Figs. 8–10. The images are taken in a two-dimensional horizontal cross-section which is at an arbitrary axial posi-
tion. In each case, the perturbation field for both vortex cores are shown.

Fig. 8(a)–(e) shows the instability mode-shapes for K = �0.9. As both vortices have very similar circulation strengths, we
may expect that the instability mode shapes may be near identical on each vortex – this is despite the fact that the pertur-
bation mode-shape forms from a random perturbation field. Indeed, for the Crow instability (as shown in Fig. 8(c)), the mode
shape growing on each vortex does appear of equal strength. This mode shape induces a sinuous oscillation along the axis of
both vortices. The mode structure of the Crow instability is observed to occur on a scale larger than the vortex core, with a
peak in xz observed on the vortex core radius. By contrast, all the Kelvin modes have smaller scale structures and are highly
dependent on the profile of the base vortex. The oscillatory Kelvin mode (�2,0,1) is shown in Fig. 8(d) and (e). The pertur-
bation field of this mode is found to oscillate temporally between the state of (d) and (e). This mode can present as either a
standing wave or a travelling wave (travelling in the axial direction) [28,29]. Comparing the mode shapes observed by Lacaze
et al. [16], Billant et al. [27], we assume that the mode presents as a travelling wave. The perturbation vorticity (the mode
shape) of the Crow instability is observed to be slightly reduced on the strong vortex. By contrast, all the Kelvin modes
show an obvious reduction of perturbation vorticity strength in the strong vortex when compared with the weak vortex.
This is especially apparent in the Kelvin mode (�2,0,1) and the second solution branch of the Kelvin mode (�1,1). It is
postulated that the increased damping of the Kelvin modes (relative to the Crow instability) is due to the highly complex,
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Fig. 7. Peak growth rates (linear regime) and the corresponding critical wavenumbers of the predicted instabilities at Re = 20000. MMode (�1,1,1); s Crow
instability; h Mode (�2,0,1).



(a) Mode (−1, 1, 1) at ka0 = 2.2 (b) Mode (−1, 1, 2) at ka0 = 3.8 (c) Crow instability at ka0 = 0.3

Fig. 9. Perturbation vorticity fields illustrating the mode shapes, corresponding to peak growth rates, identified for K = �0.7. Contour lines and flooded
contours are as per Fig. 8.

(a) Mode (−1, 1, 1) at ka0 = 3.4 (b) Crow instability at ka0 = 0.8

Fig. 10. Perturbation vorticity fields illustrating the mode shapes, corresponding to peak growth rates, identified for K = �0.3. Contour lines and flooded
contours are as per Fig. 8.

(a) Mode (−1, 1, 1) at ka0 = 2.0 (b) Mode (−1, 1, 2) at ka0 = 3.6 (c) Crow instability at ka0 = 0.25

(d) Mode (−2, 0, 1) at ka0 = 1.00 (e) Mode (−2, 0, 1) at ka0 = 1.00

Fig. 8. Perturbation vorticity fields illustrating the mode shapes, corresponding to peak growth rates, identified for K = �0.9. Contour lines represent
vorticity level of 0.33% of the local peak vorticity at each vortex. Darker flooded contours represent positive vorticity perturbations and lighter flooded
contours represent negative vorticity perturbations.
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Fig. 11. Direct numerical simulation of a K = �0.6 vortex pair at Re = 2400. Two levels of vorticity iso-surface are plotted for each vortex. The weaker vortex
is the lower vortex in this figure.
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small-wavelength structures inherent with these modes. By comparison, the large wave-length, Crow instability has a
relatively simple structure, with larger scales in all three dimensions.

The strain at the center of the strong vortex decreases with jKj [18]. Thus, for the case K = �0.7, the perturbations do not
develop as vigorously on the strong vortex, when compared with the case of K = �0.9. Indeed, at K = �0.7, only the Crow
mode develops any appreciable perturbations on the strong vortex as shown in Fig. 9(c). Comparing K = �0.7 with K =
�0.9, it is interesting to note that the mode-shapes in the weak vortex in Fig. 9 have not altered appreciably with K. As
jKj is further reduced to K = �0.3, only two instability modes are observed as the leading modes across the wavenumber
domain. Their perturbation fields are shown in Fig. 10(a) and (b). A finite amount of perturbation vorticity still appears in
the vicinity of the strong vortex for the Crow instability, but no perturbation is observed to grow on the stronger vortex
for the Kelvin mode (�1,1,1).

Considering Fig. 7(b), we note that the peak growth of the Kelvin mode (�1,1,1) occurs at higher normalized wavenum-
ber as jKj? 0. The bandwidth of this mode has also been shown to become broader in Figs. 4–6. Given the higher growth
rate of the first solution branch of the Kelvin mode, it is not surprising that the second branch solution is not observed for
K = �0.3. The mode structure for the first solution branch of the Kelvin mode only appears on the highly strained, weak vor-
tex. The strain of the base field has appreciably altered the mode shape in Fig. 10(a). This is also apparent for the Crow insta-
bility that also grows more strongly on the weak vortex in preference to the strong vortex in Fig. 10(a).

A plot from a three-dimensional direct numerical simulation for a K = �0.6 vortex pair is shown in Fig. 11. The overall
domain has a length of roughly six critical instability wavelengths. At the time shown in the plot, non-linear growth of
the mode is just becoming evident. The core of the weaker vortex is seen to be more heavily deformed than the stronger
vortex due to the three-dimensional instability. The typical sinusoidal core structure [2,5] is observed inside the weaker vor-
tex and is believed to be driven by the Kelvin mode (�1,1). This result supports our prediction that perturbations are stron-
ger on the weaker vortex.

3. Discussion

Large wavelength Crow instabilities begin to dominate as jKj 6 0.25. We note an increase in growth rate and critical
wavenumber for this mode for smaller jKj, in agreement with analytical findings of [12]. Analytical evaluations of the Crow
instability do not consider the effects of highly deformed core profile on the development of the mode. Despite this, the se-
vere deformation of the weak vortex noted for small jKj has little influence on the mode development, in agreement with
their findings.

By contrast, the growth of the short-wavelength Kelvin modes is highly dependent on the vortex profile. Slight deviations
away from jKj = 1 results in a significant asymmetry in instability mode development across the vortex cores. We note that
even for K = �0.9, a significant difference is observed in the amplitude of the perturbation mode-shape growing on the weak
vortex by comparison to the strong vortex. This is especially apparent for the second branch of the Kelvin mode (�1,1) of
more complicated structure, as well as the Kelvin mode (�2,0,1). In closing it should be stated that the linear instabilities
observed, in isolation, do not cause any appreciable reduction in the coherence of either vortex core. However, they are the
leading instability modes in a cascade that is expected to significantly decrease the coherence of the vorticity making up the
vortex pair. The linear perturbation mode-shape is critical to further non-linear instability developments. Enhanced dissipa-
tion of a vortex pair requires the development of instability modes on both vortex cores. In the absence of this, one vortex
will remain coherent while the other is destroyed. For practical applications (in particular for aircraft wakes), these findings
indicate that each vortex making up a vortex pair should have similar circulation strength to ensure that the dissipation of
both vortices is enhanced. In addition, it is of interest that the normalized growth rate decreases for all modes for jKj < 0.2,
indicating that there is a critical value of jKj, below which instabilities on the weaker vortex develop more slowly. Further
investigations of direct numerical simulation are required to elucidate the non-linear instability growth that occurs beyond
the linear growth regime.
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4. Conclusion

A linear stability analysis of counter-rotating vortex pairs with unequal circulation strengths has been conducted. Three
instability modes have been identified across the range �0.1 > K > �1.0. These modes are equivalent to instability modes
described in previous studies of equal strength counter-rotating vortex pairs, and features a Crow instability and two Kelvin
modes. However, in this case, Kelvin mode instabilities are observed to grow preferentially on the weaker vortex, and the
global growth rate of these Kelvin modes (�1,1) reduces as jKj? 0. By contrast the long wave-length Crow instability
and another Kelvin mode (�2,0,1) exhibit an increase in growth rate as jKj is reduced. In addition, the Crow instability
exhibits strong growth on both vortex cores down to K = �0.3. These linear instability modes may lead to enhanced dissi-
pation of the vortex pair.
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