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This paper proposes a new approach for evaluating numerically the forces and moments7

applied to a circular cylinder that is immersed in a fluid and which translates and rotates8

near a plane wall. Under the proposed approach, the flow is decomposed into inner and9

outer flows. The inner flow represents the flow in the thin interstice between the cylinder10

and the wall, and is obtained as an analytic expression using lubrication theory. The11

outer flow represents the flow far from the interstice, which does not depend on the12

magnitude of the gap between the cylinder and the wall, when the gap is small. The13

outer flow is obtained using numerical simulation as a function of both the Reynolds14

number and the slip coefficient. The force and moment coefficients are then obtained, as15

functions of the Reynolds number, slip coefficient and gap-to-diameter ratio, by combining16

the inner and outer solutions. Importantly, since the outer flow does not depend on the17

gap-to-diameter ratio, the parameter space to be explored by numerical simulations is18

greatly reduced compared to using finite gap ratio simulations. Moreover, the numerical19

difficulties associated with resolving the interstitial flow are avoided. The proposed20

approach can be extended to a wide range of rolling bodies, including spherical particles21

and wheels, and should significantly reduce the computational expense required to model22

the hydrodynamic forces and predict the subsequent motion of such bodies.23

Key words: flow-structure interactions, wakes, computational methods24

1. Introduction25

The problem of a particle or body that moves along or close to a surface is important for a26

range of industrial and natural flows, such as particle technology and sediment transport.27
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One issue of particular importance is to determine of the hydrodynamic drag force applied28

to such a body, and hence predict the subsequent motion of the body.29

For elementary particles with simplified geometry, such as a smooth sphere or cylinder30

rolling or translating along a plane wall, the hydrodynamic forces depend strongly on the31

magnitude of the gap between the particle and the wall (Goldman, Cox & Brenner 1967;32

O’Neill & Stewartson 1967; Merlen & Frankiewicz 2011). In particular, the drag force33

becomes infinite as the gap approaches zero, therefore a smooth sphere or cylinder would34

be unable to move while in contact with a smooth wall. In order for the particle to travel35

along the surface, a finite gap between the particle and the wall must be established, by36

cavitation (Prokunin 2003; Ashmore, Del Pino & Mullin 2005), surface roughness (Smart,37

Beimfohr & Leighton 1993; Galvin, Zhao & Davis 2001; Thompson, Leweke & Hourigan38

2021; Houdroge et al. 2023) or compressibility (Terrington, Thompson & Hourigan 2022).39

Once the hydrodynamic gap has been determined, the hydrodynamic forces and40

moments can be evaluated to predict the resulting motion of the body. For the rolling41

sphere, Ashmore et al. (2005) and Kozlov, Prokunin & Slavin (2007) predict the effective42

gap induced by cavitation, while Smart et al. (1993), Galvin et al. (2001) and Zhao, Galvin43

& Davis (2002) assume an average gap introduced by a sparse distribution of surface44

asperities on either the sphere or the wall. Assuming that inertial effects are negligible,45

these authors then use the Goldman et al. (1967) formulae for the drag and moment applied46

to a sphere in a Stokes flow to predict the motion of the sphere.47

For slow-moving particles, the Stokes approximation can be used to predict the forces48

and moments applied to the rolling body, and in such cases, explicit expressions for the49

hydrodynamic forces and moments can be obtained. Dean & O’Neill (1963) and O’Neill50

(1964) use a bispherical coordinate transformation to obtain the forces and moments51

applied to spheres that either rotate or translate along a plane wall. However, their series52

solution suffers from poor numerical convergence when the gap between the sphere and the53

wall is small. For small gaps, asymptotic expressions for the forces and moments have been54

determined by Goldman et al. (1967), O’Neill & Stewartson (1967) and Cooley & O’Neill55

(1968), using the method of matched asymptotic expansions. Similarly, solutions for the56

Stokes flow over the rolling cylinder were obtained using bipolar coordinates by Jeffery57

(1922), Wakiya (1975) and Jeffrey & Onishi (1981), while the asymptotic solution for58

small gaps was obtained using the method of matched asymptotic expansions by Merlen59

& Frankiewicz (2011).60

For moderate and high Reynolds number flows, however, numerical simulations are61

required to predict the hydrodynamic forces and moments applied to the rolling body.62

Numerical simulations of the flow over a translating or rolling cylinder have been presented63

by Stewart et al. (2006, 2010b), Rao et al. (2011) and Houdroge et al. (2017, 2020), while64

numerical simulations of the flow over a rolling sphere are presented by Zeng et al. (2009),65

Stewart et al. (2010a) and Houdroge et al. (2016, 2023).66

The forces and moments applied to a given body (either a cylinder or a sphere) depend67

on three parameters: the gap–diameter ratio G/d, the Reynolds number Re = Ud/ν, and68

the slip coefficient k = Ωd/(2U), where d is the diameter of the body, U and Ω are the69

linear and angular velocities, respectively, G is the gap between the body and the wall, and70

ν is the kinematic viscosity of the fluid. Existing numerical studies have not considered71

the entirety of this parameter space. Stewart et al. (2006, 2010a,b), Rao et al. (2011) and72

Houdroge et al. (2017) consider only a single gap ratio, noting that the flow far from the73

gap is approximately independent of the gap ratio. While the gap ratio effect is considered74

by Houdroge et al. (2020, 2023), these studies are restricted to cylinders and spheres that75

roll without slipping (k = 1). Slip has been observed experimentally, for both spheres76
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(Smart et al. 1993; Yang et al. 2006) and cylinders (Seddon & Mullin 2006), for certain77

ranges of the governing parameters, therefore a complete dynamical model for the motion78

of the particle requires the dependence of the force and moment coefficients against all79

three parameters: G/d, k and Re. To cover this entire parameter space directly requires80

significant computational expense.81

The small gap ratios that occur in many experiments pose further difficulty in simulating82

numerically flow over a rolling body. As the gap ratio is reduced, a progressively83

finer numerical mesh is needed to capture adequately the interstitial flow, therefore84

numerical simulations become impractical for a sufficiently small gap ratio. For example,85

Houdroge et al. (2023) perform simulations of the rolling sphere to a minimum gap ratio86

2 × 10−4, which is substantially larger than the gap ratios of order 10−6 required to match87

their experimental measurements. Therefore, numerical simulation of the entire flow,88

including both the outer flow and the interstitial flow, is impractical for many experimental89

conditions.90

To avoid these numerical difficulties, the present paper applies the method of matched91

asymptotic expansions, which has been used to solve the Stokes flow over rolling bodies92

(Goldman et al. 1967; O’Neill & Stewartson 1967; Merlen & Frankiewicz 2011), to the93

inertial flow over a rolling body. Under this approach, the flow is separated conceptually94

into inner and outer domains. The inner flow describes the flow in the narrow interstice95

between the rolling body and the wall, and is given by an analytical solution obtained96

using lubrication theory. The outer flow is the flow far from the interstice, which is97

independent of G/d. Since an analytical solution is obtained for the inner flow, numerical98

simulations are performed only for the outer flow, thereby avoiding the numerical99

difficulties associated with a small gap ratio. Moreover, since the outer flow depends only100

weakly on G/d, the parameter space that must be covered by numerical simulations is101

reduced to only two variables, Re and k, significantly reducing the computational work102

required to model the dynamics of the particle.103

In the present work, this framework is applied to the two-dimensional flow over an104

infinite circular cylinder translating and rolling near a plane wall. The solution for the outer105

flow is obtained numerically as a function of Re and k. By combining the outer solution106

with the lubrication solution for the inner flow, the total force and moment coefficients are107

evaluated as functions of the three parameters G/d, Re and k. We introduce the wake force108

and moment coefficients – defined as the difference in the force and moment coefficients109

between inertial and Stokes flow – to characterise the effects of inertia on the forces and110

moments applied to the cylinder. The wake drag and moment coefficients are found to be111

insensitive to G/d, and can therefore be determined directly from the outer-flow solution.112

The wake lift coefficient decreases linearly with
√

G/d, and an upper limit for the wake113

lift coefficient can be determined directly from the outer solution.114

While the present paper considers only the two-dimensional flow over a circular115

cylinder, we anticipate that the approach used can be applied to other rolling body flows,116

such as rolling spheres or finite cylinders (wheels). For example, Goldman et al. (1967),117

O’Neill & Stewartson (1967) and Cooley & O’Neill (1968) decompose the Stokes flow118

over a sphere near a wall into inner and outer solutions. Therefore, a similar decomposition119

likely exists for inertial flows, and the method proposed in this paper should allow for120

efficient numerical computation of the forces and moments applied to the sphere.121

For the rolling sphere, many relevant physical effects, such as cavitation (Prokunin122

2003), compressibility and surface roughness (Smart et al. 1993), are relevant only in123

the inner region (Terrington et al. 2022), and one might expect the same to be true of124

the rolling cylinder flow. Assuming that this is the case, the present study separates these125
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Figure 1. Problem considered in this work. A cylinder of diameter d travels along a plane wall with
translational and angular velocities U and Ω , respectively, while maintain a gap G between the cylinder and
the wall. The hydrodynamic lift, drag and moment are given by L, D and M, respectively. Finally, k is the slip
coefficient.

effects from those of inertia, which are significant only in the outer region. For example,126

this would allow the forces and moments applied to a cylinder in an inertial and cavitating127

flow to be determined by combining the inertial, but non-cavitating, outer solution, with a128

cavitating, but non-inertial, inner solution.129

The structure of this paper is as follows. First, in § 2, we present the theoretical analysis130

that justifies the decomposition into inner and outer solutions. Next, in § 3, we discuss the131

numerical approach used to obtain the outer-flow solution. Finally, the force and moment132

coefficients are computed using the inner and outer solutions, in § 4. Concluding remarks133

are made in § 5.134

2. Inner and outer solutions for the rolling cylinder135

Merlen & Frankiewicz (2011) compute the forces and moments applied to a rolling circular136

cylinder in a Stokes flow by using the method of matched asymptotic expansions, where137

the flow is decomposed conceptually into inner and outer flows. This section extends their138

analysis to inertial flows. The structure of this section is as follows. First, in § 2.1, we139

present the geometry and problem description. Next, in § 2.2, we discuss the computation140

of the outer flow. Then, in § 2.3, we review the lubrication solution for the inner flow.141

Finally, in § 2.4, we show that the inner and outer solutions are matched asymptotically142

when G/d is small.143

2.1. Problem description144

As shown in figure 1, we consider the flow over a circular cylinder of diameter d, which145

travels along a plane wall with linear velocity U and angular velocity Ω . Due to surface146

roughness, cavitation or compressibility, the cylinder is separated from the wall by an147

effective hydrodynamic gap G. The density of the fluid is denoted by ρ, while the dynamic148

and kinematic viscosities are denoted by μ and ν, respectively. The fluid exerts a drag149

force D, lift force L and moment M on the cylinder.150

Three dimensionless parameters are required to characterise the flow: the Reynolds151

number Re = Ud/ν, the slip coefficient k = Ωd/2U, and the gap-to-diameter ratio G/d.152

This study aims to determine the functional dependence of the force and moment153
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Figure 2. Geometry and coordinate systems for (a) the outer flow, and (b) the inner flow.

coefficients154

CL = L/
(

1
2 dρU2

)
, (2.1)155

CD = D/
(

1
2 dρU2

)
, (2.2)156

CM = M/
(

1
4 d2ρU2

)
, (2.3)157

against Re, k and G/d. As indicated previously, this is achieved by separating the flow into158

inner and outer regions. The outer flow depends only on Re and k, while the inner flow is159

determined analytically using lubrication theory.160

2.2. Outer flow161

When G/d is small, the flow far from the interstice is approximately independent of the162

gap ratio (Houdroge et al. 2020). This suggests that a gap-ratio-independent outer flow can163

be obtained by assuming G/d = 0, as is done by Merlen & Frankiewicz (2011) for Stokes164

flow.165

The geometry and coordinate systems for the outer flow are presented in figure 2(a).166

The outer flow is made non-dimensional by the cylinder diameter, translational velocity167

and fluid density, so that in non-dimensional units, the cylinder has diameter 1, linear168

velocity 1 and angular velocity k. Three different coordinate systems are used for the outer169

flow: a Cartesian coordinate system (x, y) centred at the contact point, polar coordinates170

(r, φ) also centred at the contact point, and a second polar coordinate system (r2, θ) with171

its origin at the centre of the cylinder.172

We assume that flow is governed by the incompressible continuity and Navier–Stokes173

equations, which are expressed in non-dimensional form as174

∇ · u = 0, (2.4)175

∂u
∂t

+ u · ∇u = −∇p + 1

Re
∇2u, (2.5)176

where u = u∗/U is the dimensionless velocity, and p = ( p∗ − p∗∞)/ρU2 is the177

dimensionless pressure. Here, asterisks (∗) denote dimensional quantities, and p∗∞ is the178

free-stream pressure.179

The boundary conditions for (2.4) and (2.5) are as follows: we assume that there is no180

slip between the fluid and the cylinder (ux = k cos θ and uy = k sin θ on the cylinder), as181
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well as between the fluid and the lower wall (ux = 1 and uy = 0 on the wall). Finally, the182

free-stream conditions far from the cylinder are ux = 1, uy = 0 and p = 0.183

Merlen & Frankiewicz (2011) consider the solution to the outer flow under the184

Stokes flow approximation (Re = 0), and for steady flow (∂u/∂t = 0). Under these185

approximations, (2.5) reduces to186

∇p2 = ∇2u, (2.6)187

where p2 = ( p∗ − p∗∞)/(μU/d) is a non-dimensional pressure defined for Stokes flow,188

which is related to the non-dimensionalisation for inertial flows as p2 = limRe→0(Re p).189

Using the (r, φ, z) coordinates, the analytic solution to this problem is (Merlen &190

Frankiewicz 2011)191

ur = cos φ

[
1 − 2(2 + k)

ξ
+ 3(k + 1)

ξ2

]
, (2.7)192

uφ = sin φ

[
1 − k + 1

ξ2

]
, (2.8)193

p = 1

Re
cos φ

[
8(k + 1)

rξ2
− 4(k + 2)

rξ
− 2(k + 1)

r3

]
, (2.9)194

where ξ = r/ sin φ. To allow for comparisons between the inertial and Stokes flow195

solutions at finite Re, the pressure in (2.9) is expressed in the non-dimensional form196

corresponding to inertial flow. While this results in an infinite pressure p at Re = 0, the197

corresponding Stokes flow pressure p2 = limRe→0(Re p) remains finite.198

On the surface of the cylinder (ξ = 1), the pressure distribution is given by (Merlen &199

Frankiewicz 2011)200

p = 2

Re
cos φ

sin3 φ
[2k sin2 φ − (k + 1)], (2.10)201

while the wall shear stress distribution on the cylinder is202

τx = τ ∗
x

ρU2
= − 1

Re
2(2k + 1) cos(2φ)

sin2 φ
, (2.11)203

τy = τ ∗
y

ρU2
= − 1

Re
2(2k + 1) sin(2φ)

sin2 φ
, (2.12)204

which are also non-dimensionalised according to the inertial flow variables. Importantly,205

both the pressure and wall stress distributions are singular at the contact point (φ = 0), so206

that the drag and moment applied to the cylinder are infinite when G/d = 0 (Merlen &207

Frankiewicz 2011). For finite gap ratios, however, the outer-flow solution is invalid near208

the contact point. Lubrication theory is used to obtain the inner-flow solution, which is209

matched asymptotically to the outer-flow solution (Merlen & Frankiewicz 2011), and the210

resulting drag and moment are finite.211

Equations (2.7)–(2.12) are valid for Stokes flow, and do not apply when Re is non-zero.212

Instead, the solution to (2.4) and (2.5) must be obtained numerically. However, the inertial213

solution should approach the Stokes flow solution near the contact point (φ = 0). The214

characteristic length scale associated with the flow near the contact point is the film215
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thickness216

h∗ = d
2

(
1 − cos

(
φ

2

))
≈ 1

16
dφ2. (2.13)217

The corresponding film thickness Reynolds number,218

Reh ≈ 1

16
Udφ2/ν ≈ φ2

16
Re, (2.14)219

approaches zero as φ → 0, therefore the solution to the finite Re outer flow is expected to220

approach the Stokes flow solution (2.7)–(2.9) as the contact point is approached. This is221

validated using numerical simulations in § 3.222

2.3. Inner flow223

We now turn our attention to the lubrication flow in the narrow gap between the cylinder224

and the wall. The geometry for the inner flow is shown in figure 2(b). Assuming that G/d225

is small, the cylinder can be approximated by a parabolic shape, so that the film thickness226

h is given by227

h∗ = G + x∗2

d
. (2.15)228

Additionally, the velocity of the lower wall is approximated by U1 = U, and the velocity229

of the upper wall (cylinder) is approximated as U2 = kU.230

Since the film thickness is small, the standard assumptions of lubrication theory apply231

(Ghosh, Majumdar & Sarangi 2014): flow is laminar; inertial effects are negligible;232

pressure gradients across the film thickness are negligible; and velocity gradients along233

the film are negligible compared to velocity gradients across the film thickness. We also234

assume that the interstitial flow is two-dimensional, so that there are no velocity or pressure235

gradients in the z-direction, and the inner flow is steady in time.236

Under these assumptions, the streamwise velocity profile is given by237

u∗
x(x, y) = 1

2μ

∂p∗

∂x∗ (y∗2 − y∗h∗) +
(

1 − y∗

h∗

)
U + k

y∗

h∗ U, (2.16)238

which gives a volume flow rate239

q∗(x) =
∫ h

0

u∗
x(x, y) dy∗ = − h∗3

12μ

∂p∗

∂x∗ + 1

2
(1 + k)Uh∗. (2.17)240

The interstitial pressure distribution is obtained by solving the Reynolds equation,241

∂q∗

∂x∗ = 0. (2.18)242

For the present case, this equation is written as243

∂

∂x∗

[
h∗3

12μ

∂p∗

∂x

]
= 1

2
(1 + k)U

∂h∗

∂x∗ . (2.19)244
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For the inner flow, we introduce a new set of non-dimensional parameters:245

x̂ = x∗/
√

Gd, (2.20a)246

H = h∗/G = 1 + x̂2, (2.20b)247

p̂(x̂) = ( p∗(x) − p∗
∞)/

(
2μ(1 + k)U
d(G/d)3/2

)
. (2.20c)248

Note that the non-dimensional position x̂ and pressure p̂ in the inner region differ from249

the corresponding non-dimensional forms x and p used in the outer flow. Using this250

non-dimensionalisation, (2.19) becomes251

∂

∂ x̂

[
H3 ∂ p̂

∂ x̂

]
= 3

∂H
∂ x̂

, (2.21)252

and using the boundary conditions p̂(∞) = p̂(−∞) = 0, the solution of (2.21) is253

p̂ = −x̂
(1 + x̂2)2

, (2.22)254

in agreement with Merlen & Frankiewicz (2011). When non-dimensionalised by outer flow255

variables, the pressure is written as256

p = p∗ − p∗∞
ρU2

= −2(1 + k)
Re (G/d)3/2

x̂
(1 + x̂2)2

. (2.23)257

Finally, the wall shear stress on the cylinder is given by258

τ ∗
x = −μ

∂u∗
x

∂y

∣∣∣∣
y=h

= −h
2

∂p∗

∂x
+ μ(1 − k)U

h∗ , (2.24)259

which is written in non-dimensional form, using outer-flow variables, as260

τx = τ ∗
x

ρU2
= 1

Re (G/d)

[
(2k + 1)

−2x̂2

(1 + x̂2)2
+ 2

(1 + x̂2)2

]
. (2.25)261

2.4. Asymptotic matching of the inner and outer flows262

In order for the decomposition into inner and outer solutions to be valid, the inner and263

outer solutions must be asymptotically matched. This requires there to be an overlap264

region where both the inner and outer solutions are in agreement. In this subsection, we265

demonstrate that the Stokes flow solution to the outer flow is matched asymptotically to266

the inner lubrication solution. Since the inertial solution to the outer flow is expected to267

approach the Stokes flow solution near the contact point (φ = 0), we expect the inner and268

outer flow solutions to also be matched for inertial flows. This assumption is validated269

using numerical simulations in § 3.270

We first estimate the domains where the inner and outer solutions are valid. Consider271

terms of up to fourth order in the Maclaurin series expansion for the film thickness near272

the interstice:273

h∗ = G + x∗2

d
+ x∗4

d3
+ · · · . (2.26)274

In computing the outer solution, we assume G = 0, which is valid when |x∗| � √
Gd.275

The inner solution was evaluated assuming a parabolic profile, which requires x∗2 	 d2.276
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Therefore, the inner and outer solutions can be simultaneously valid only in the region277

1 	 |x̂| 	 1√
G/d

. (2.27)278

The asymptotic matching region, if it exists, must be located in the domain given by279

(2.27). Note that the inequality in (2.27) cannot be satisfied for G/d � 10−2, therefore280

the decomposition into inner and outer solutions will not be valid for gap ratios above this281

value.282

We now show that the pressure distributions on the surface of the cylinder from the inner283

and outer solutions are matched asymptotically. Since, on the surface of the cylinder, we284

have285

x = x∗/d = sin φ cos φ, (2.28a)286

y = y∗/d = sin2 φ, (2.28b)287

the pressure distribution for the outer solution (2.10) becomes288

pouter = 2

Re

[
2k

x
y

− (k + 1)
x
y2

]
. (2.29)289

Since y ≈ (G/d)x̂2 and x ≈ (G/d)1/2x̂ in the matching region, this becomes290

pouter ≈ − 2(k + 1)

Re (G/d)3/2

1

x̂3
+ 4k

Re (G/d)1/2

1

x̂
, (2.30)291

and since x̂ � 1, for k /=−1, this reduces to292

pouter ≈ − 2(k + 1)

Re (G/d)3/2

1

x̂3
. (2.31)293

Similarly, when x̂ � 1, the inner pressure distribution (2.23) becomes294

pinner ≈ − 2(1 + k)
Re (G/d)3/2

1

x̂3
. (2.32)295

Equations (2.31) and (2.32) are equal, therefore the inner and outer pressure distributions296

are matched asymptotically.297

Asymptotic matching between the pressure profiles for the inner and outer solutions is298

shown in figure 3. Figure 3(a) shows the pressure profiles for both the inner and outer299

solutions, normalised in inner variables. The asymptotic solution given by (2.31) and300

(2.32) is also shown. The inner solution differs from the asymptotic prediction when x̂ is301

small, but approaches the asymptotic profile when x̂ � 1. The outer solution differs from302

the asymptotic region for large x̂, but follows the asymptotic profile when x̂ 	 1/
√

Gd.303

Importantly, for G/d ≤ 10−3, there exists an asymptotic matching region, given by (2.27),304

where both the inner and outer solutions are asymptotically matched.305

Figure 3(b) presents the pressure profiles for the inner and outer solutions normalised in306

outer variables. For large values of θ , the inner and outer solutions differ, and only the outer307

solution is valid. The inner solution approaches the outer solution as θ is decreased, and308

the inner and outer solutions are approximately equal in the asymptotic matching region.309

Finite-gap effects become significant as θ is decreased further, and the inner solution310

begins to deviate from the outer solution. The maximum θ for which finite-gap effects311

are significant decreases as the gap ratio G/d is decreased.312
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Figure 3. Asymptotic matching between the inner (2.23) and outer (2.10) pressure distributions for Stokes
flow, expressed in (a) inner and (b) outer variables, respectively. The asymptotic limit of the inner and outer
pressure profiles in the matching region ((2.31) and (2.32)) is also shown in (a).

We can also show that the wall shear stress distributions from the inner and outer313

solutions are matched asymptotically. The x-wall shear stress in the outer region (2.11)314

becomes, in the asymptotic matching region,315

τxouter = −2(2k + 1)

Re
1 − 2y

y
≈ −2(2k + 1)

Re (G/d)

1

x̂2
, (2.33)316

where we have assumed that G/d 	 1. For x̂ � 1, the wall shear from the inner region317

(2.25) is given by318

τxinner ≈ −2(2k + 1)

Re (G/d)

1

x̂2
. (2.34)319

Equations (2.33) and (2.34) are equal, therefore the wall shear stress distributions are also320

matched asymptotically.321

3. Numerical methodology322

This section discusses the numerical method used to solve for the inertial flow over a323

circular cylinder near a plane wall. Two different numerical approaches are considered.324

First, we consider the conventional approach, where the solution is obtained numerically325

using a single computational domain that includes both the inner and outer regions. The326

second approach is to simulate numerically only the outer flow, by setting G/d = 0, and327

use the analytic lubrication solution for the inner region.328

The structure of this section is as follows. First, in § 3.1, we discuss the conventional329

approach to obtaining the finite gap ratio solution over a single computational domain.330

Then, in § 3.2, the results of the single-domain computation are interpreted using the331

decomposition into inner and outer flows. Next, in § 3.3, we discuss the combined332

numerical–analytical approach, where the numerically obtained, G/d-independent outer333

flow is matched with the inner lubrication solution. Finally, the possibility of applying the334
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Figure 4. Schematic illustration of (a) the computational domain and (b) the block mesh scheme, for the finite
gap ratio cylinder. The variables Ny and 
x denote the number of cells across the film thickness, and minimum
cell spacing in the streamwise direction, respectively. Diagrams are not to scale, and the representative mesh is
much coarser than those used for numerical simulations.

combined numerical–analytical approach to other rolling body problems is discussed in335

§ 3.4.336

3.1. Finite gap ratio337

We first discuss the conventional approach for simulating numerically the inertial flow over338

a cylinder at a finite gap ratio. This approach considers a single computational domain that339

encompasses both the inner and outer regions. Importantly, no explicit decomposition into340

inner and outer solutions is made.341

The computational domain and coordinate systems for this approach are as illustrated in342

figure 4(a). Non-dimensional coordinates are used, so that the cylinder diameter is d = 1.343

The inlet is located a distance 10d upstream from the centre of the cylinder, while the344

outlet is positioned 25d downstream from the cylinder. Finally, the domain is bounded by345

an upper wall located at vertical position y = 25d above the lower wall. Simulations are346

performed in a Galilean reference frame co-translating the cylinder.347

The computational domain was meshed with a block-structured mesh, using the348

commercial software package ICEM CFD. A schematic illustration of the blocking scheme349

is shown in figure 4(b). A finer mesh resolution is used near the cylinder and in the wake,350

while a coarser resolution is used elsewhere. The cylinder is surrounded by an ‘O’-grid351

block, which passes through the interstice, allowing a good mesh quality in the interstice.352

Numerical simulations are performed using the commercial finite-volume solver353

ANSYS FLUENT. Spatial derivatives were discretised using the least squares cell-based354

formulation, with the second-order upwind scheme used for the momentum equation, and355

second-order central differencing used for all other equations. For transient simulations,356

the second-order implicit time-stepping scheme was used. The small cell size and large357

pressure magnitudes in the interstice result in a relatively stiff set of equations, therefore358

the coupled solver was used for improved robustness.359

As G/d is decreased, the element size needed to resolve the inner lubrication flow360

decreases, posing increased difficulty for numerical simulations. In the present work,361

numerical instabilities were encountered for G/d = 10−5, therefore simulations are362

performed to a minimum gap ratio G/d = 10−4. We also remark that if an explicit scheme363

were used, then the time-step restrictions due to the Courant–Friedrichs–Lewy (CFL)364

condition would provide additional limits on the minimum gap ratio. In the present work,365
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Nc Ny 
x �CD,wake �CL,wake �CM ,wake CD,rms CL,rms CM ,rms

Mesh 1 22 056 40 2 × 10−4 2.4739 1.5754 −0.2847 0.3479 0.5708 0.0403

Mesh 2 104 227 80 1 × 10−4 2.6346 1.5166 −0.3060 0.3761 0.6631 0.0418

Mesh 3 358 056 160 5 × 10−5 2.6556 1.5098 −0.3094 0.3731 0.6680 0.0417
— — — (0.79 %) (0.45 %) (1.09 %) (0.80 %) (0.73 %) (0.12 %)

Table 1. Comparison between the mean and r.m.s. wake force and moment coefficients for Re = 200, k = 1
and G/d = 10−4 evaluated using different grid resolutions. The relative differences between the mesh 2 and
mesh 3 predictions are given in parentheses.

Houdroge et al. (2017) Present study Relative difference
�CD 3.6973 3.6767 0.558 %
�CL 1.6423 1.6413 0.0572 %

Merlen & Frankiewicz (2011) Present study Relative difference
�CD 6.0099 6.1374 2.12 %
�CL 1.8660 1.9089 2.30 %

Table 2. Comparison between the force and moment coefficients predicted using the present numerical
approach and previous numerical investigations: Houdroge et al. (2017) at Re = 100, k = 1 and G/d = 0.005,
and Merlen & Frankiewicz (2011) at Re = 60, k = 1 and G/d = 0.0025.

the CFL limitations are avoided by using an implicit scheme. While large Courant numbers366

also imply a loss of temporal accuracy, the interstitial flow is time-steady, therefore367

relatively large Courant numbers can be tolerated in the interstice.368

Boundary conditions for the fluid are as follows. A constant velocity ux = 1, uy = 0369

was specified at the inlet, while a constant pressure p = 0 was specified at the outlet.370

The stress-free condition was applied to the upper boundary. Finally, both the cylinder371

and lower wall are no-slip boundaries, with velocities ux = 1 and uy = 0 on the wall, and372

ux = k cos θ and uy = k sin θ on the cylinder.373

A grid resolution study was performed to determine the resolution needed to obtain374

converged solutions. A single case with Re = 200, k = 1 and G/d = 10−4 was considered.375

Table 1 lists statistics for the three meshes used for the resolution study, including the376

total number of cells in each mesh (Nc), the number of cells across the film thickness377

(Ny), and the minimum streamwise cell spacing in the interstice (
x). The time-mean and378

root-mean-square (r.m.s.) wake drag lift and moment coefficients (the wake force/moment379

coefficients are defined in § 4) are also provided. Differences between the predicted force380

and moment coefficients evaluated using mesh 2 and mesh 3 are below 1.1 %, therefore381

mesh 2 is sufficient to resolve the force and moment coefficients.382

Finally, we compare our predicted force and moment coefficients to results from383

previous numerical investigations, which are presented in table 2. First, we compare the384

predicted mean drag and lift coefficients at k = 1, Re = 100 and G/d = 0.005 to results385

from Houdroge et al. (2017). Excellent agreement is observed, with errors below 0.6 %.386

Next, we compare the mean drag and lift coefficients at k = 1, Re = 60 and G/d = 0.0025387

to results presented in Merlen & Frankiewicz (2011). Good agreement is observed, with388

errors below 2.3 %. Therefore, the present numerical results are validated successfully389

against previous results.390
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Figure 5. Vorticity contours for the rolling cylinder at Re = 100, k = 1 and t = 195, for gap ratios

(a) G/d = 10−3 and (b) G/d = 10−4, obtained using the single-domain, finite gap ratio method.

3.2. The inner and outer solutions for inertial flow391

As discussed in § 2, the flow over a cylinder at small gap ratios can be separated392

conceptually into an outer flow, which is independent of G/d, and an inner lubrication flow,393

where gap ratio effects are significant. In this subsection, the results of the single-domain,394

finite gap ratio simulations are interpreted and analysed using this decomposition into395

inner and outer flows, to demonstrate that the outer flow is independent of G/d, and that396

the lubrication solution is applicable in the inner region.397

Simulations are performed at Re = 100 and k = 1, for a range of gap ratios between398

G/d = 10−2 and G/d = 10−4. For these parameters, the unconstrained wake is typically399

three-dimensional (Houdroge et al. 2017). For simplicity, however, only two-dimensional400

simulations are considered in this work. For two-dimensional flow at Re = 100 and k = 1,401

the wake features periodic vortex shedding (Stewart et al. 2010b; Houdroge et al. 2017).402

We remark that the wake dynamics and transitions have been studied in great detail by403

Stewart et al. (2010b) and Houdroge et al. (2017), and are not the main focus of this work.404

The present work is concerned with determining the force and moment coefficients as405

functions of Re, G/d and k, using the decomposition into inner and outer flows.406

Figure 5 presents vorticity contours for the rolling cylinder at Re = 100 and k =407

1, for gap ratios G/d = 10−3 and 10−4, at flow time t = 195, which corresponds408

approximately to the maximum drag coefficient. A transient animation is provided409

in supplementary movie 1 available at https://doi.org/10.1017/jfm.2023.296. The wake410

features the periodic shedding of vortices from the upper shear layer, which interact411

with secondary vorticity from the wall to form counter-rotating vortex pairs (Houdroge412

et al. 2017). Importantly, there is almost no perceptible difference in the wake between413

G/d = 10−3 and G/d = 10−4, confirming that the assumption of a G/d-independent outer414

flow is reasonable for inertial flows.415

While the flow far from the interstice is independent of G/d, the interstitial flow depends416

strongly on gap ratio. Figure 6 presents streamlines (contours of the streamfunction)417

in the interstice for G/d = 10−3 and 10−4, and significant differences between the418

streamfunctions are observed between the two plots. In particular, the upstream and419

downstream saddle points (labelled Su and Sd in figure 6) move closer to the contact420
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Figure 6. Contours of the streamfunction, Ψ near the interstice for the rolling cylinder at Re = 100, k = 1 and

t = 195, for gap ratios (a) G/d = 10−3 and (b) G/d = 10−4, obtained using the single-domain, finite gap ratio

method outlined in § 3.1. The contour increment is 
Ψ = 10−4, and axes are stretched vertically for clarity.

point (x = 0) as G/d is decreased, and the total mass flow rate through the interstice also421

decreases with the gap ratio.422

Figures 5 and 6 validate our assumption that the flow far from the interstice (the outer423

flow) is relatively independent of G/d, while the interstitial (inner) flow depends strongly424

on the gap ratio. This can be demonstrated further by considering the pressure distribution425

on the surface of the cylinder. Since the wake is periodic, we compute the mean pressure426

p̄, which is the pressure averaged over a single vortex-shedding cycle. We stress once again427

that since the single-domain method is used, a single pressure distribution, valid in both428

the inner and outer domains, is obtained for each gap ratio. This pressure distribution may429

be non-dimensionalised according to either outer variables (as p̄) or inner variables (as430

ˆ̄p = p̄ Re (G/d)3/2/(2(1 + k))).431

Figure 7(a) presents the mean pressure on the cylinder surface for Re = 100, k = 1 and432

for a range of gap ratios, normalised by inner variables. The theoretical prediction from433

lubrication theory (2.22) is also shown. The profiles for G/d = 10−3 and 10−4 are visually434

indistinguishable from the lubrication solution, confirming that the lubrication solution is435

valid in the inner region when G/d ≤ 10−3.436

The lubrication solution for the inner region is obtained under the assumption of steady437

flow. To check this, we have also plotted profiles of the r.m.s. pressure, normalised by inner438

variables, in figure 7(a). The r.m.s. pressures are negligible when compared to the mean439

pressure profiles, therefore the assumption of steady flow is valid in the inner region.440

Figure 7(b) shows the mean pressure on the cylinder surface normalised by outer441

variables, at Re = 100, k = 1 and for a range of gap ratios. Far from the interstice (which442

is located at θ = 0, 2π), the pressure distributions follow a single curve, confirming that443

the outer flow is independent of the gap ratio. The analytical solution for Stokes flow (2.10)444

is also presented in figure 7(b). While the inertial solutions for various G/d follow a single445

curve, this curve differs substantially from the Stokes flow solution. Therefore, for inertial446

flows, there is a G/d-independent outer solution that differs from the Stokes flow solution.447
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Figure 7. Mean pressure distribution on the cylinder surface normalised using (a) inner and (b,c) outer
variables for Re = 100 and k = 1. Solid black lines indicate the analytical solutions for (a) lubrication theory
(2.23) and (b) Stokes flow (2.10). A logarithmic y-axis is used in (c) to show that the outer solution approaches
the Stokes flow solution in the region where the inner and outer solutions are asymptotically matched. The
r.m.s. pressure is indicated by dashed lines in (a).

Figure 7(c) shows the mean pressure on the cylinder surface in the region near the448

interstice, on a logarithmic y-axis. For small θ , the pressure profiles no longer follow449

a single G/d-independent solution, confirming that gap ratio effects are significant in450

the inner region. As θ is decreased, but still sufficiently large for gap ratio effects to be451

negligible, the inertial pressure distributions approach the Stokes flow solution. Therefore,452

the inertial outer-flow solution approaches the Stokes flow solution as θ approaches zero.453

In this subsection, we have examined the flow over a rolling cylinder at a finite gap454

ratio, using a single-domain numerical computation. By interpreting this solution using455

the decomposition into inner and outer solutions, we have shown that for a sufficiently456

small gap ratio (G/d ≤ 10−3):457

(i) the inner flow is given by the analytic solution to lubrication theory;458

(ii) the outer flow is independent of the gap ratio, but differs from the Stokes flow459

solution;460

(iii) as the interstice is approached, the inertial outer-flow solution approaches the Stokes461

flow solution.462
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Figure 8. For zero-gap ratio simulations, the contact point is removed from the mesh and replaced with
prescribed velocity boundaries, thereby avoiding the infinite pressure at the contact point. The parameters

x and Ny are the minimum cell spacing in the x-direction, and the number of cells across the film thickness,
respectively.
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Figure 9. Vorticity contours for the rolling cylinder at Re = 100, k = 1 and t = 195, obtained using the
G/d = 0 method outlined in this subsection.

3.3. Obtaining the outer-flow solution for G/d = 0463

The results of § 3.2 show that the outer flow does not depend on G/d, while the inner464

flow matches the analytic solution obtained using lubrication theory. Therefore, the465

single-domain approach is inefficient: numerical simulations are performed for each value466

of G/d, despite the fact that this affects only the inner flow, for which we already have an467

analytic solution. Therefore, we propose a new approach, where numerical simulations are468

performed only to obtain the G/d-independent outer solution. This solution can then be469

matched with the analytic solution to the inner flow to obtain a complete solution, valid470

for small gap ratios.471

To obtain the G/d-independent outer flow, we assume G/d = 0, thereby avoiding472

any finite-gap effects. Under this condition, the pressure approaches infinity at the473

contact point. The infinite pressures are avoided by removing the contact point from the474

computational domain, as shown in figure 8. New inlet/outlet boundaries are introduced at475

θ = ±θc, and the velocity at these boundaries is set to the Stokes flow velocity profiles476

(2.7) and (2.8). Since the inertial outer flow solution is approximately equal to the477

Stokes flow solution for small θ , this approximation is reasonable when θc is small. All478

other aspects of the numerical method, including the discretisation methods, boundary479

conditions and mesh scheme, are identical to the finite-gap simulations described in § 3.1.480

Figure 9 presents vorticity contours obtained using the zero-gap method, for k = 1, Re =481

100 and θc = 0.01. A transient animation is also provided in supplementary movie 1. The482

observed wake is nearly identical to that obtained using the single-domain simulations at483

G/d = 10−3 and 10−4 (figures 5a,b), confirming that the proposed numerical approach is484

capable of predicting correctly the G/d-independent outer flow.485
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Figure 10. Contours of the streamfunction Ψ near the interstice for the rolling cylinder at Re = 100, k = 1,
t = 195 and G/d = 0: (a) numerical result, and (b) the analytic Stokes flow solution (2.7) and (2.8).
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Figure 11. (a) Mean pressure distribution on the cylinder surface for G/d = 0 and 10−4 at Re = 100 and
k = 1. (b) Difference between the mean pressure distributions for inertial flow and Stokes flow (p̄ − pStokes) at
Re = 100 and k = 1.

Figure 10(a) presents streamfunction contours near the contact point for G/d = 0,486

k = 1 and Re = 100 obtained numerically with θc = 0.01, while figure 10(b) presents487

streamfunction contours for Stokes flow (2.7) and (2.8). The predicted streamlines are488

nearly identical, confirming that the proposed method produces a velocity field that is489

approximately equal to the Stokes flow solution near the contact point. Moreover, the490

streamfunctions for the finite-gap cases, shown in figures 6(a,b), appear to converge491

towards the zero-gap solution as G/d approaches zero.492

Note that the outer solution obtained under the assumption G/d = 0 is valid for |θ | �493

2
√

G/d (see (2.27)), and the inner lubrication solution must be used when |θ | is below this494

value. To illustrate this point, figure 11(a) presents the mean pressure along the cylinder495
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surface for Re = 100 and k = 1 obtained using the G/d = 0 approach outlined in this496

subsection, with θc = 0.01, and a solution obtained using the conventional single-domain497

approach outlined in § 3.1, for finite gap ratio G/d = 10−4. The Stokes flow solution for498

the outer flow (2.10) is also shown. All solutions are in good agreement between θ = 0.1499

and θ = 0.3. However, finite-gap effects become significant for θ < 0.1, and the G/d = 0500

solution does not match the G/d = 10−4 solution in this region.501

Therefore, we introduce a transition angle θ0 that separates the inner and outer solutions.502

By using the numerically obtained G/d = 0 outer solution for |θ | ≥ θ0, and the inner503

lubrication solution for |θ | < θ0, we obtain a complete solution to the flow over a rolling504

cylinder at small, but finite, gap ratios. Importantly, θ0 must lie in the asymptotic matching505

region given by (2.27), therefore we require 2
√

G/d ≤ θ0 ≤ 2. However, an additional506

constraint is that θ0 must be sufficiently small for inertial effects to be negligible. For507

this, we assume a film thickness Reynolds number Reh � 1, which by (2.14) requires θ0 �508

2/
√

Re. The range 0.1 ≤ θ ≤ 0.3 satisfies these conditions approximately for G/d = 10−4
509

and Re = 100, therefore θ0 may take any value within this range. This is confirmed by the510

agreement between the inner and outer solutions over this range as observed in figure 11(a).511

Figure 11(b) presents a comparison between the pressure distribution obtained under512

the zero-gap assumption, and the pressure obtained using the single-domain, finite-gap513

method. Here, we have subtracted the pressure from the Stokes flow solution (2.10) to show514

more clearly the inertial contribution. Away from the contact point, the single-domain and515

zero-gap solutions are nearly indistinguishable, therefore the zero-gap method proposed in516

this subsection is capable of determining the outer solution for finite-gap inertial flows, in517

the domain where this solution is applicable.518

To summarise, we have shown that the inertial outer-flow solution obtained under the519

assumption G/d = 0 correctly describes the flow in the outer region (|θ | � 2/
√

G/d)520

for small, but finite, gap ratios. We can then construct a complete solution by taking the521

numerically obtained outer solution for |θ | ≥ θ0, and using the inner lubrication solution522

for |θ | < θ0, where θ0 is in the range 2
√

G/d 	 θ0 	 2 and θ0 � 2/
√

Re.523

A grid resolution study is performed to confirm that a grid-independent outer-flow524

solutions is obtained. Table 3 lists four meshes used for this resolution study, including525

the number of cells in each mesh (Nc), the representative cell sizes 
x and Ny (which are526

illustrated in figure 8), and the cut-out angle θc. The time-mean and r.m.s. wake force and527

moment coefficients are also provided, and changes to these quantities between meshes 2528

and 3 are below 1 %. Therefore, mesh 2 is considered sufficient to resolve the force and529

moment coefficients.530

Mesh 4 has the same resolution as mesh 2, but with θc = 0.02. Changes to the mean531

and r.m.s. wake force and moment coefficients between meshes 2 and 4 are below 0.02 %,532

confirming that θc = 0.01 is sufficiently small to not introduce any significant errors.533

Note that the minimum spacing in the x-direction for mesh 2 is 
x = 10−5, an order534

of magnitude smaller than the minimum spacing used for the finite G/d computations535

(table 1). This was to reduce numerical errors associated with taking the difference536

of large numbers, which occurs in some of our analysis (see Appendix A). However,537

in Appendix A, we demonstrate that taking a larger value of 
x = 5 × 10−4 does not538

significantly affect the predicted force and moment coefficients.539

In this subsection, we have simulated the flow over a cylinder at G/d = 0 by removing540

the contact point from the computational domain in order to avoid the infinite pressure at541

the contact point. Pirozzoli, Orlandi & Bernardini (2012) have also performed numerical542

simulations of the rolling cylinder at G/d = 0, but do not report any difficulties with543
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infinite pressures at the contact point. They report finite values for the drag coefficient544

at G/d = 0, in contrast with both the Stokes flow predictions and the present study.545

This discrepancy is likely a result of insufficient resolution to capture the flow near the546

contact point. They use a relatively low grid resolution of 40 points per cell radius, which547

means that near the contact point (specifically, for −0.1 < x/d < 0.1), the cylinder and548

the wall lie in the same computational cell. It is unlikely that the flow in this region is549

resolved satisfactorily, and the finite drag coefficients reported in that work are considered550

unreliable. However, since the outer flow is relatively insensitive to the flow near the551

contact point, the outer flow may be resolved correctly in their work.552

3.4. Application of the proposed method to other problems553

This paper has considered only the two-dimensional flow over a rolling cylinder. However,554

we anticipate that the approach outlined in this work may be extended to other rolling body555

problems, such as the flow over a rolling sphere or a finite cylinder (wheel). The method of556

matched asymptotic expansions has already been applied to the Stokes flow over a rolling557

sphere (Goldman et al. 1967; O’Neill & Stewartson 1967; Cooley & O’Neill 1968), to558

decompose the flow into inner and outer expansions. Therefore, we expect that the same559

method may be applied to the inertial flow over a rolling sphere.560

We remark, however, that there are both qualitative and quantitative differences between561

the Stokes flows over rolling cylinders and spheres. For example, both the torque applied562

to a purely translating cylinder and the force applied to a purely rotating cylinder are zero563

(Jeffrey & Onishi 1981), which is not the case for the rolling and translating spheres.564

Moreover, the force and moment applied to a rolling sphere both exhibit a logarithmic565

dependence on the gap ratio (Goldman et al. 1967; O’Neill & Stewartson 1967; Cooley &566

O’Neill 1968), compared to the (G/d)−1/2 dependence for the force and moment applied to567

the rolling cylinder (Merlen & Frankiewicz 2011). Despite these differences, the method of568

asymptotic expansions has been applied successfully to the Stokes flow over both cylinders569

and spheres, therefore the same approach should be applicable to the inertial flow over a570

rolling sphere.571

The present paper has also neglected several physical effects that are likely to be572

present under typical experimental conditions, including surface roughness, cavitation and573

compressibility. These effects are likely to be significant in the inner region, therefore a574

modified lubrication theory must be used to account for these effects, such as Patir &575

Cheng (1978) for rough surfaces, Almqvist et al. (2014) for compressible and cavitating576

lubrication, or Harp & Salant (2001) for roughness-induced inter-asperity cavitation.577

However, these effects are likely to be negligible in the outer region. Therefore, the578

present method will allow these effects to be considered separately from those of inertia,579

which affects only the outer solution. For example, the height of surface asperities is580

generally much smaller than the cylinder diameter, therefore surface roughness will be581

negligible in the outer region, except at high Reynolds numbers when the boundary layer582

thickness is comparable to the surface roughness height.583

Similarly, the magnitude of the pressure in the outer region is generally small, except584

near the contact point where the outer solution is invalid. Hence we expect cavitation585

and compressibility effects to be confined to the inner region, at least for a wide range of586

experimental parameters. This is supported by the experimental observation that typically587

cavitation bubbles are confined to the inner region, for both spheres (Ashmore et al. 2005)588

and cylinders (Seddon & Mullin 2006). Moreover, Ashmore et al. (2005) are able to predict589
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the motion of a sphere in a cavitating flow by assuming that flow outside the cavitation590

region is not affected by the formation of the cavitation bubble.591

Seddon & Mullin (2006), however, have argued that, unlike the flow over a rolling592

sphere, cavitation in the interstice of the rolling cylinder modifies the outer flow to593

the extent that reverse rotation of the cylinder is observed. They argue that cavitation594

introduces a blockage effect, reducing the mass flow through the interstice. As a result,595

more fluid must flow around the upper surface of the cylinder, modifying the outer flow.596

However, the gap-to-diameter ratio also affects the volume flow rate of fluid through597

the interstice, yet the outer solution is insensitive to G/d (Merlen & Frankiewicz 2011).598

Therefore, there is no reason to assume that cavitation in the inner region directly affects599

the outer flow in this manner. A possible explanation for the observed reverse rotation of600

the cylinder is that cavitation modifies the inner-flow contribution to the moment applied to601

the cylinder, thereby altering the rotation rate. This would, of course, indirectly affect the602

outer flow, through its dependence on the parameter k. This proposal remains unconfirmed,603

however, and further research is needed to determine whether the effects of cavitation are604

confined to the inner region of the rolling cylinder flow.605

4. Forces and moments606

In this section, we discuss the computation of the force and moment coefficients using607

the inner and outer solutions. We first discuss the forces and moments for the Stokes flow608

solutions in § 4.1. Then the force and moment coefficients for inertial flows are discussed609

in §§ 4.2 and 4.3. Finally, in § 4.4, we present a parameter space study of the force and610

moment coefficients for a range of k and Re.611

The total forces and moments applied to the cylinder are computed as612

CD =
∫ 2π

0

(−p sin θ + τx) dθ, (4.1)613

CL =
∫ 2π

0

( p cos θ + τy) dθ, (4.2)614

CM =
∫ 2π

0

(τy sin θ + τx cos θ) dθ. (4.3)615

Each of these integrals is split into inner and outer regions as follows. First, the force and616

moment contributions from the outer region are written as617

CD,O =
∫ 2π−θ0

θ0

(−p sin θ + τx) dθ, (4.4)618

CL,O =
∫ 2π−θ0

θ0

(p cos θ + τy) dθ, (4.5)619

CM ,O =
∫ 2π−θ0

θ0

(τy sin θ + τx cos θ) dθ, (4.6)620
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while the force and moment contributions from the inner region are621

CD,I =
∫ x̂0

−x̂0

[−4(G/d)x̂p + 2(G/d)1/2τx] dx̂, (4.7)622

CL,I =
∫ x̂0

−x̂0

2(G/d)1/2(p + τy) dx̂, (4.8)623

CM ,I =
∫ x̂0

−x̂0

[2(G/d)1/2τx + 4(G/d)x̂τy] dx̂, (4.9)624

where x̂0 ≈ sin θ0/(2
√

G/d), and subscripts I and O denote the inner and outer regions,625

respectively. As discussed in § 3.3, the parameter θ0 denotes the boundary between the626

inner and outer regions, and must lie in the region where the inner and outer solutions627

are asymptotically matched (2
√

G/d 	 θ0 	 2 and θ0 � 2/
√

Re). Within this range, the628

individual force and moment contributions from the inner and outer regions may depend629

on the value of θ0, but the total forces and moments must be independent of θ0.630

4.1. Stokes flow631

Substituting (2.23) and (2.25) into (4.7)–(4.9), we obtain the following expressions for the632

contributions to the force and moment coefficients from the inner region:633

CD,I = 8

Re (G/d)1/2
tan−1 x̂0, (4.10)634

CL,I = 0, (4.11)635

CM ,I = 8

Re (G/d)1/2

[
−k tan−1 x̂0 + (1 + k)

x̂0

1 + x̂2
0

]
. (4.12)636

Similarly, substituting (2.10)–(2.12) into (4.4)–(4.6) gives expressions for the contribution637

to the force and moment coefficients from the outer region for Stokes flow:638

CD,O,S = 8

Re
[cot(θ0/2) + k sin θ0], (4.13)639

CL,O,S = 0, (4.14)640

CM ,O,S = −8(2k + 1)

Re
cot(θ0/2), (4.15)641

where a subscript S is used for the Stokes flow solutions. When θ0 is within the asymptotic642

matching region (x̂0 � 1 and θ0 	 1), these are approximated as643

CD,I ≈ 8

Re (G/d)1/2

[
π

2
− 1

x̂0

]
, (4.16)644

CM ,I ≈ 8

Re (G/d)1/2

[
−π

2
k + (2k + 1)

1

x̂0

]
, (4.17)645

CD,O,S ≈ 8

Re (G/d)1/2

1

x̂0
, (4.18)646

CM ,O,S ≈ − 8(2k + 1)

Re (G/d)1/2

1

x̂0
, (4.19)647
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and the total force and moment coefficients for Stokes flow are therefore given by648

CD,S = 4π

Re (G/d)1/2
, (4.20)649

CL,S = 0, (4.21)650

CM ,S = − 4πk
Re (G/d)1/2

, (4.22)651

in agreement with Merlen & Frankiewicz (2011). Importantly, while the drag and moment652

coefficients from both the inner and outer regions ((4.16)–(4.19)) depend on the boundary653

between the inner and outer regions (θ0), the total force and moment coefficients654

((4.20)–(4.22)) do not.655

4.2. Inertial flow656

We now consider the force and moment coefficients for inertial flow. Since inertial effects657

are negligible in the inner region, the force and moment coefficients for the inner region658

(CD,I , CL,I and CM ,I) are given by the lubrication solution (4.10)–(4.12). The force and659

moment coefficients for the outer region (CD,O, CL,O and CM ,O) are evaluated using660

(4.4)–(4.6), with the pressure and velocity fields obtained numerically using the G/d = 0661

approach described in § 3.3. In this subsection, we consider the mean force and moment662

coefficients averaged over one period of the saturated vortex shedding state, which are663

denoted �CD,O, �CL,O and �CM ,O, respectively. The transient behaviour of the force and664

moment coefficients is considered later, in § 4.3. Only the inertial outer-flow solutions are665

time-averaged, as both the inner lubrication and outer Stokes flow solutions are steady in666

time. Note that equations derived in this subsection are expressed in terms of instantaneous667

quantities, for generality. The corresponding expressions for time-averaged quantities are668

identical.669

Figure 12(a) plots the numerically obtained values of �CD,O, �CL,O and �CM ,O against670

θ0, for Re = 100 and k = 1. The corresponding force and moment coefficients for Stokes671

flow ((4.13)–(4.15)) are indicated by dashed lines. The force and moment coefficients for672

inertial flow are all greater in magnitude than the corresponding values for Stokes flow,673

indicating that inertial effects increase the drag, lift and torque applied to the cylinder.674

Due to the pressure singularity at the contact point, the drag and moment coefficients are675

singular at θ0 = 0. However, the lift coefficient remains finite as θ0 approaches 0.676

The force and moment coefficients for a finite gap ratio are given as the sums of677

contributions from the inner and outer solutions:678

CD = CD,I + CD,O, CL = CL,I + CL,O, CM = CM ,I + CM ,O. (4.23a–c)679

This is illustrated in figure 13, which plots the balance between the inner and outer drag680

coefficients against θ0, for G/d = 10−4, Re = 100 and k = 1. Here, CD,I is given by (4.10),681

while �CD,O is evaluated numerically using the G/d = 0 method described in § 3.3. While682

both CD,I and �CD,O vary with θ0, the total drag coefficient (4.23a–c) is approximately683

constant when θ0 is within the asymptotic matching region (estimated to be 0.1 ≤ θ0 ≤684

0.3 at G/d = 10−4 and Re = 100; see § 3.3). Therefore, we can take any θ0 within this685

range, and obtain the force and moment coefficients through (4.23a–c). The dashed line686

in figure 13 indicates the drag coefficient obtained using the single-domain computation687

at G/d = 10−4, and the drag coefficient predicted by (4.23a–c) is in excellent agreement688

with this value when θ0 is in the asymptotic matching region.689

0 A1-23



S.J. Terrington, M.C. Thompson and K. Hourigan

5 2.0

1.5

1.0

0.5

0

–0.5
0

CD,O

CD,O

CL,O

CM,O

CL,O
CM,O



C̄

[D
/L

/M
 ],

O

π/2

θ0 θ0

π 0 π/2 π

0

–5

(b)(a)

C̄
[D

/L
/M

 ],
O

Figure 12. (a) Variation in the force and moment coefficients for the outer region ( �CD,O, �CL,O and �CM ,O)
against θ0 for Re = 100 and k = 1 (solid lines) as well as the Stokes flow predictions (4.13)–(4.15), shown
with dashed lines. (b) Variation of the inertial contributions to the outer-flow force and moment coefficients

(
 �CD,O, 
 �CL,O and 
 �CM ,O) with θ0 for Re = 100 and k = 1. Dashed lines indicate the limiting behaviour for
small θ0.
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Figure 13. Contributions to the drag coefficient from the inner and outer regions, for G/d = 10−4, Re = 100
and k = 1.

While (4.23a–c) is sufficient to obtain the force and moment coefficients for a given690

G/d, a more convenient approach is to first define the ‘wake’ force/moment coefficients as691

692

CD,wake = CD − CD,S, CL,wake = CL − CL,S, CM ,wake = CM − CM ,S, (4.24a–c)693

which we interpret as representing the inertial contribution to the total force and moment694

coefficients. Importantly, we will show that the wake force and moment coefficients are695

approximately independent of G/d, and can be estimated using the outer-flow solution696

alone. Thus this decomposition is more convenient than (4.23a–c), as the G/d dependence697
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is contained entirely within the Stokes flow terms, for which we have a known analytic698

solution (4.20)–(4.22).699

Using (4.23a–c) and (4.24a–c), the wake force and moment coefficients can be700

expressed as701

CD,wake = 
CD,O(θ0), CL,wake = 
CL,O(θ0), CM ,wake = 
CM ,O(θ0), (4.25a–c)702

where703


CD,O = CD,O − CD,O,S, 
CL,O = CL,O − CL,O,S, 
CM ,O = CM ,O − CM ,O,S

(4.26a–c)

704

705

are the inertial contributions to the force and moment coefficients from the outer flow,706

which are plotted in figure 12(b). While the total force and moment coefficients are707

singular at θ0 = 0, the inertial contributions remain bounded.708

Since the conditions for asymptotic matching require θ0 	 1, we consider the behaviour709

of 
 �CD,O, 
 �CM ,O and 
 �CL,O for small θ0. The asymptotic behaviours of these quantities710

for small θ0 are represented by dashed lines in figure 12(b). These are obtained by fitting711

fourth-order polynomials to each of these quantities in the range 0.1 ≤ θ0 ≤ 0.5, and712

retaining terms up to first order in θ0. (The range θc ≤ θ0 ≤ 0.1 is omitted from the713

polynomial fit, due to numerical issues associated with large pressure magnitudes near714

the contact point, as discussed in Appendix A.) The drag and moment coefficients are715

approximately constant, therefore the first-order terms are also neglected, i.e.716


CD,O ≈ 
CD,O|θ0=0 + O(θ2
0 ), 
CM ,O ≈ 
CM ,O|θ0=0 + O(θ2

0 ), (4.27a,b)717

while the lift coefficient is approximately linear, i.e.718


CL,O ≈ 
CL,O|θ0=0 + O(θ0). (4.28)719

Terms such as 
CD,O|θ0=0 are obtained as the constant terms in the polynomial fits,720

which, for the Re = 100 and k = 1 case shown in figure 12(b), are 
CD,O|θ0=0 = 1.8973,721


CL,O|θ0=0 = 1.9821 and 
CM ,O|θ0=0 = −0.3099.722

Based on the conditions required for asymptotic matching between the inner and outer723

solutions, we assume that θ0 ∝ √
G/d. Then, by using (4.27a,b) and (4.28), we can724

estimate the wake force and moment coefficients from the outer flow solution alone:725

CD,wake = 
CD,O|θ0=0 + O(G/d), (4.29)726

CL,wake = 
CL,O|θ0=0 + O(
√

G/d), (4.30)727

CM ,wake = 
CM ,O|θ0=0 + O(G/d). (4.31)728

Note that the predicted wake drag and moment coefficients are of a higher order of729

accuracy than the wake lift coefficient.730

Equations (4.29)–(4.31) allow the wake force and moment coefficients to be estimated731

from the outer solution alone. The total force and moment coefficients are then obtained732

by adding the Stokes flow force and moment coefficients:733

CD = CD,S + CD,wake, CL = CL,wake, CM = CM ,S + CM ,wake. (4.32a–c)734

Moreover, the wake force and moment coefficients are approximately independent of G/d,735

for small gaps. The gap ratio affects the force and moment coefficients through only the736

Stokes flow terms, for which analytical expressions are given in (4.20)–(4.22).737
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Figure 14. Comparison between the predicted force and moment coefficients (a) CD, (b) CM and (c) CL against
gap ratio using single-domain, finite G/d numerical simulations (circles) and the Stokes flow solution (solid
lines), and by using the wake force and moment coefficients obtained from the G/d = 0 solution ((4.32a–c),
dashed lines), for Re = 100 and k = 1.

We now validate the proposed approach for determining the force and moment738

coefficients. Figure 14 presents the variation in the force and moment coefficients against739

G/d for Re = 100 and k = 1, determined using finite gap ratio numerical simulations740

(open circles) and the Stokes flow predictions (solid lines), and by using the wake741

force/moment predictions from the zero-gap solution ((4.32a–c), dashed lines). For both742

CD and CM (figures 14a,b), the predictions from the finite gap ratio simulations differ743

from the Stokes flow predictions by a constant amount, which is equal to the wake744

drag/moment coefficients predicted from the zero-gap outer flow ((4.29) and (4.31)).745

Therefore, (4.32a–c) is found to predict accurately the drag and moment coefficients, for746

a wide range of gap ratios.747

Figure 14(c) presents the �CL predicted from finite G/d simulations, as well as predicted748

using (4.32a–c). While (4.32a–c) predicts a constant lift coefficient, the numerically749

computed values decrease with increasing G/d. The numerically obtained �CL vary750

approximately linearly with
√

G/d, which is consistent with the order of the error estimate751

given in (4.30). The value of CL,wake predicted from the outer-flow solution (4.30) is the752

upper limit on the lift coefficient, as G/d approaches 0. This is confirmed by extrapolating753
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Figure 15. Time history of (a) CD,wake, (b) CM ,wake and (c) CL,wake for a range of gap ratios. Flow times are
shifted so that t = 0 corresponds to the maximum value of CD,wake.

�CL from the finite G/d simulations to G/d = 0, which gives a prediction �CL = 1.9921,754

and this is within 0.5 % of the prediction obtained using (4.30).755

We remark that finite-gap simulations could not be performed for G/d < 10−4, due to756

numerical difficulties associated with small cell sizes. However, the force and moment757

predictions obtained using (4.29)–(4.31) and (4.32a–c) are valid for arbitrarily small G/d,758

and the accuracy of these predictions increases as G/d approaches zero. Therefore, in759

addition to reducing the parameter space to only two variables, the proposed method allows760

the force and moment predictions to be obtained for arbitrarily small G/d, while avoiding761

the numerical difficulties that occur in finite-gap simulations.762

4.3. Force and moment coefficients for unsteady flow763

While only time-averaged force and moment coefficients were discussed in § 4.2,764

(4.29)–(4.32a–c) are also valid for the instantaneous force and moment coefficients765

in an unsteady flow. Figure 15 presents the time history of CD,wake, CL,wake and766

CM ,wake for Re = 100 and k = 1 obtained from the G/d = 0 numerical simulations767

using (4.29)–(4.31). The wake force and moment coefficients predicted using finite G/d768

simulations are also plotted in figure 15. To aid comparison, the flow times have been769

shifted so that t = 0 corresponds to the maximum drag coefficient. Since the wake is770

in the saturated state of periodic vortex shedding, the predicted wake force and moment771

coefficients are periodic, and two complete wake cycles are shown.772

Figures 15(a,b) show that the instantaneous values of CD,wake and CM ,wake are773

approximately independent of gap ratio, with some mild discrepancy observed between774

different values of G/d. On the other hand, figure 15(c) shows that the instantaneous775
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G/d �CD,wake �CL,wake �CM ,wake CD,rms CL,rms CM ,rms St

0 1.89501 1.95905 −0.31466 0.05334 0.08541 0.01215 0.0714

10−2 1.90290 1.49162 −0.31318 0.04669 0.07719 0.01046 0.0722
(0.42 %) (23.86 %) (0.47 %) (12.47 %) (9.62 %) (13.94 %) (1.12 %)

10−3 1.89600 1.83841 −0.31914 0.05268 0.08455 0.01197 0.0715
(0.05 %) (6.16 %) (1.43 %) (1.23 %) (1.01 %) (1.49 %) (0.11 %)

10−4 1.88960 1.94602 −0.31252 0.05310 0.08500 0.01210 0.0713
(0.29 %) (0.67 %) (0.68 %) (0.45 %) (0.48 %) (0.41 %) (0.10 %)

Table 4. Dependence of the mean and r.m.s. wake force and moment coefficients, as well as the Strouhal
number (St), with gap ratio, at Re = 100 and k = 1. The relative differences between the finite-gap and zero-gap
values are given in parentheses.

value of CL,wake generally increases as G/d decreases, consistent with results presented776

in § 4.2. However, while the mean value of CL,wake increases with G/d, the amplitude of777

the oscillations in CL,wake appears to be relatively independent of G/d.778

These qualitative observations are confirmed by table 4, which presents the mean and779

r.m.s. values of the wake force and moment coefficients, as well as the Strouhal number,780

for each G/d. For all quantities apart from the mean lift coefficient �CL,wake, the relative781

error between the predictions for G/d = 10−3 and G/d = 0 are below 1.5 %, while the782

relative errors between the G/d = 10−4 and G/d = 0 predictions for all quantities are783

below 0.7 %. We remark that the discretisation errors from the grid resolution study are784

also of order 1 %, so it is unclear how much of the observed discrepancy is due to finite-gap785

effects and how much is due to grid resolution errors.786

Differences in �CL,wake between the finite-gap and zero-gap solutions are substantial for787

both G/d = 10−3 and G/d = 10−2, but below 0.7 % for G/d = 10−4. As discussed in788

§ 4.2, the value of �CL,wake predicted from the G/d = 0 simulations using (4.30) is an789

upper bound on the true value of �CL,wake, with an error approximately proportional to790 √
G/d. While the mean lift coefficient shows strong dependence on G/d, CL,rms shows791

only weak dependence on G/d, and the differences in CL,rms between the finite-gap and792

zero-gap solutions are comparable to the corresponding differences in both CM ,rms and793

CD,rms. Therefore, while the mean value of CL,wake depends on G/d, the amplitude of794

oscillations of CL,wake is relatively insensitive to G/d.795

Differences in CD,rms, CL,rms and CM ,rms between the G/d = 10−2 and G/d = 0796

predictions are substantial. This is not surprising, given that the decomposition into inner797

and outer solutions is valid only for small G/d. Moreover, figure 7(a) demonstrates that798

the lubrication solution to the inner region is not valid for G/d = 10−2. Despite these799

observations, the values of �CD,wake and �CM ,wake predicted for G/d = 10−2 are within800

0.5 % of those predicted using G/d = 0, therefore the decomposition into inner and outer801

flows is surprisingly effective in predicting the mean drag and moment coefficients, even802

for relatively large G/d where the decomposition into inner and outer flows is not strictly803

valid.804

4.4. Parameter space805

One of the main advantages of the decomposition into inner and outer flows presented in806

this paper is that the wake force and moment coefficients predicted from the outer flow807

depend on only two variables, Re and k, substantially reducing the parameter space to be808
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Figure 16. Variation of (a) mean and (b) r.m.s. wake force and moment coefficients against Re for k = 1.
Circles and triangles indicate the predictions for unsteady and steady flow, respectively.

explored by numerical simulations. In this subsection, we present numerical computations809

of the mean and r.m.s. wake force and moment coefficients as functions of Re and k. We810

remark that the predicted values of �CL,wake presented in this subsection represent the upper811

bounds on the lift coefficient, and have an error of order
√

G/d.812

We first consider the effect of Re on the wake force and moment coefficients for k = 1.813

Figure 16(a) presents the variation of �CD,wake, �CL,wake and �CM ,wake against Re, for k = 1814

and for both unsteady (circles) and steady (triangles) two-dimensional flow. For steady815

flow, the magnitudes of the mean wake drag, lift and moment coefficients all decrease816

monotonically with increasing Re. For k = 1, the two-dimensional wake becomes unsteady817

for Re > 88 (Houdroge et al. 2017). However, there is little difference in the values of818

�CL,wake and �CM ,wake between the steady and unsteady flows above this critical Reynolds819

number. The transition to unsteady flow is associated with a significant increase in the820

mean wake drag coefficient ( �CD,wake), compared to the steady flow. This is in agreement821

with Houdroge et al. (2017), who find that two-dimensional vortex shedding results in an822

increase in drag coefficient compared to steady flow, with only small changes to the lift823

coefficient.824

Figure 16(b) presents the variation of the r.m.s. force and moment coefficients CD,rms,825

CL,rms and CM ,rms against Re for k = 1. Below the critical Reynolds number Rec,2D = 88,826

the r.m.s. force and moment coefficients are zero, indicating steady flow. As Re is increased827

beyond this critical value, the r.m.s. force and moment coefficients increase monotonically.828

Figure 17 presents a comparison between the predicted mean drag and lift coefficients829

at G/d = 0.005 and k = 1 using the wake drag approach (4.32a–c) and with numerical830

results given by Houdroge et al. (2017). Good agreement is observed between the predicted831

mean drag coefficients, while our method slightly overestimates the lift coefficient, which832

is expected given that the error in the lift coefficient is of order
√

G/d.833

We now consider the effect of varying rotation rate (k) for a fixed Reynolds number834

Re = 100. Figure 18(a) presents the variation of �CD,wake, �CL,wake and �CM ,wake against835

Re for k = 1 for both unsteady (circles) and steady (triangles) two-dimensional flow. The836

magnitudes of both �CD,wake and �CM ,wake increase monotonically with k, while �CL,wake837

takes a minimum value between k = 0.5 and k = 0.75.838
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Figure 18(b) presents the variation of the r.m.s. force and moment coefficients against839

k for Re = 100. At this Reynolds number, the transition between steady and unsteady840

flow occurs between k = 0.25 and k = 0.5, and the r.m.s. force and moment coefficients841

increase monotonically with k beyond the transition to unsteady flow. This suggests that842

the critical Reynolds number for transition to unsteady flow decreases with increasing843

k, in agreement with Stewart et al. (2010b). Figure 18(a) shows little difference in the844

predicted mean lift and moment coefficients between steady and unsteady flow; however,845

the transition to unsteady flow is associated with an increase in the mean drag coefficient.846

Finally, we consider the effects of varying both Re and k for two-dimensional, unsteady847

flow. Figure 19 presents contours of �CD,wake, �CL,wake, �CM ,wake, CD,rms, CL,rms and CM ,rms848

against both Re and k, for two-dimensional unsteady flow. The solid black line marks the849

approximate transition from steady to unsteady flow, which is estimated using the r.m.s.850

lift coefficient. The critical Reynolds number Rec,2D decreases with increasing rotation851

rate, in agreement with Stewart et al. (2010b). Within the unsteady regime, the r.m.s. force852

and moment coefficients (figures 19d– f ) increase with both k and Re.853
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Within the steady regime, �CD,wake increases with increasing k, but decreases with854

increasing Re (figure 19a). In the unsteady regime, however, �CD,wake increases with855

both increasing k and increasing Re. The wake moment coefficient �CM ,wake depends856

predominantly on Re within the steady regime, but is relatively insensitive to Re in the857

unsteady regime (figure 19c). In particular, �CM ,wake decreases with increasing Re in the858

steady regime, and increases with increasing k in the unsteady regime. Finally, �CL,wake859

decreases with increasing Re in both the steady and unsteady regimes (figure 19b). For860

a fixed Reynolds number, �CL,wake takes a minimum value for an intermediate value of k861

between approximately k = 0.5 and k = 0.75; however, there is insufficient resolution in862

the k-direction to determine accurately the precise value of k that minimises �CL,wake.863

5. Conclusions864

We have analysed and interpreted the two-dimensional flow over a circular cylinder865

translating along a plane wall, and with varying degrees of slip, including no-slip, using866

the method of matched asymptotic expansions. We consider an inner lubrication flow,867

which is valid near the thin interstice between the cylinder and the wall, and an inertial868

outer flow, which is valid far from the interstice. While three dimensionless parameters –869

Re, k and G/d – are needed to characterise this flow, the outer flow is independent of G/d,870

and depends only on Re and k.871

Numerical simulations of the outer flow were performed over a range of Re and k. To872

avoid the numerical difficulties associated with infinite pressures arising at the contact873

point, the contact point itself was removed from the computational domain. The velocity874

corresponding to the Stokes flow solution was used as a prescribed-velocity boundary875

condition near the contact point. To complete this model, the pressure and velocity876

distributions in the inner flow were then obtained as an analytic solution to the Reynolds877

equation.878

The effects of inertia on the force and moment coefficients are characterised by the wake879

force and moment coefficients, which can be estimated directly from the outer solution as880

functions of Re and k. The total force and moment coefficients can then be determined881

by adding to these the corresponding force and moment coefficients for Stokes flow. We882

find that the wake drag and moment coefficients are relatively independent of G/d, and883

therefore can be determined to a high accuracy using the outer solution alone. The wake884

lift coefficient, however, decreases linearly with
√

G/d, and the outer solution provides885

only the maximum limiting value of the wake coefficient.886

One of the main benefits of the decomposition into inner and outer flows is a reduction887

in the parameter space to be explored by numerical simulations. In particular, the gap888

ratio effects are completely contained in the analytic Stokes flow terms, and numerical889

simulations for the outer flow depend only on Re and k. To obtain a complete dynamical890

model for the motion of a rolling body, we require the force and moment coefficients as891

functions of k, Re and G/d. The present method substantially reduces the computational892

effort required to construct such a model.893

Additionally, numerical simulations become increasingly impractical as G/d is894

decreased, due to the small cell sizes required to resolve the interstitial flow, as well as895

the large pressure magnitudes that occur in the interstice. Since the inner lubrication flow896

is obtained analytically, rather than numerically, these issues are avoided when using the897

method proposed in this paper.898

Moreover, many physical effects, including cavitation, compressibility and surface899

roughness, are likely to be significant only in the inner region. The present work separates900
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these effects conceptually from those of inertia, which affects only the outer region.901

Therefore, the method presented in this work can be extended readily to rough cylinders,902

as well as cavitating and compressible flows, by using a modified Reynolds equation that903

accounts for these effects in the inner region.904

Finally, we remark that the method presented in this work can be extended to flows over905

other rolling bodies. For example, the forces and moments applied to a rolling sphere in906

a Stokes flow are also obtained by a decomposition into inner and outer flows (Goldman907

et al. 1967; O’Neill & Stewartson 1967), and we anticipate that the present approach can908

be used to obtain the wake force and moment coefficients for a rolling sphere in an inertial909

flow as functions of only Re and k. This approach may also be useful for understanding a910

range of other rolling bodies, including finite cylinders (wheels), or asymmetrically shaped911

particles. These possibilities will be explored in future research.912
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Appendix A. Computing the inertial part of the outer flow solution923

Computing the wake force and moment coefficients requires subtracting the Stokes flow924

solutions from the numerically obtained outer-flow solution. Since the pressure and wall925

shear stresses for the outer flow approach infinity as θ → 0, this requires taking the926

difference of two large, and nearly equal, numbers, when θ is small. This amplifies927

numerical errors near the contact point, making the wake force and moment computations928

unreliable when θ0 is small.929

To illustrate this point, figure 20(a) plots the mean pressure obtained numerically using930

the zero-gap approach outlined in § 3.3, for k = 1 and Re = 100. Four different meshes are931

used, with values of 
x between 10−5 and 5 × 10−4, and all other parameters are similar932

to mesh 2 from table 3. The pressure distribution for Stokes flow (2.10) is also shown. The933

pressures obtained on each mesh are nearly identical to the Stokes flow pressure when θ is934

small, and both profiles approach infinity as θ approaches zero. Therefore, computing the935

pressure difference (p̄ − pStokes) near θ = 0 requires taking the difference of two large, but936

nearly equal, numbers.937

Figure 20(b) plots profiles of the pressure difference (p̄ − pStokes) against θ . While the938

total pressure p̄ is grid-independent (figure 20a), the computed pressure difference shows939

a clear grid dependency, as well as large oscillations, when θ is small, presumably due to940

numerical errors arising from subtracting large numbers. The numerical oscillations are941

reduced as 
x is decreased, and there appears to be a clear trend in convergence towards942

a grid-independent solution as 
x is decreased. Therefore, a fine mesh with 
x = 10−5
943

was used in the present study.944

We now consider the force and moment coefficients. Figure 21 plots profiles of945


 �CD,O (defined in (4.26a–c)) against θ0, computed on each of the four numerical grids.946
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Figure 21. Profiles of the inertial part of the outer-flow contribution to the drag coefficient (
CD,O) against
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dashed line indicates the polynomial fit obtained for the 
x = 10−5 solution.

Numerical errors associated with taking the difference of large numbers are significant947

when θ0 < 0.1. These errors are most noticeable when 
x = 5 × 10−4, but visible948

numerical artefacts are still observed for the finer grids. We find similar errors for the949

other force and moment coefficients 
 �CL,O and 
 �CM ,O (not shown for brevity).950

Therefore, we consider the computed profiles of 
 �CD,O, 
 �CL,O and 
 �CM ,O to be951

unreliable when θ0 < 0.1. To estimate the wake force and moment coefficients, we propose952

fitting a fourth-order polynomial to these terms over the interval 0.1 < θ0 < 0.5, and using953

this polynomial fit to estimate the wake force and moment coefficients, as described in954

§ 4.2. The polynomial fit for 
 �CD,O obtained using the 
x = 10−5 solution is indicated955

by a dashed line in figure 21, and appears to be a good approximation for the ‘expected’956

behaviour of 
 �CD,O over the interval 0 < θ0 < 0.1. This polynomial approximation is957
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θc 
x �CD,wake �CL,wake �CM ,wake

0.01 1 × 10−5 1.895114 1.956262 −0.314521

0.01 5 × 10−5 1.895112 1.956262 −0.314521

0.01 1 × 10−5 1.895115 1.956262 −0.314521

0.01 5 × 10−4 1.895116 1.956264 −0.314520

0.1 5 × 10−5 1.900179 1.957517 −0.314208

Table 5. Comparison of the predicted mean and r.m.s. wake force and moment coefficients for Re = 100 and
k = 1, evaluated using different grid resolutions. The relative differences between the predictions from meshes
2 and 3, and meshes 2 and 4, are given in parentheses.

further justified by the agreement in the predicted wake force and moment coefficients958

compared to the single-domain, finite-gap simulations presented in table 4 (see § 4.3).959

Table 5 shows the predicted wake force and moment coefficients obtained on each960

of the four meshes, using the polynomial approximation. Variation in the predicted961

force and moment coefficients is negligible, since the polynomial fit is performed over962

the domain 0.1 < θ0 < 0.5, where the profiles are grid-independent. Therefore, while963


x = 10−5 was taken in this study, to minimise the numerical errors for small θ , the wake964

force and moment coefficients may be determined accurately using a lower resolution965

(
x = 5 × 10−4), so long as the solution for θ0 < 0.1 is disregarded when computing the966

wake force and moment coefficients.967

Since the region θ < 0.1 is not used for computing the wake force and moment968

coefficients, an additional simulation was performed with θc = 0.1 and 
x = 10−5. The969

mean wake force and moment coefficients obtained using this mesh are presented in970

table 5, and changes to the predicted force and moment coefficients are below 0.3 % when971

compared to the θc = 0.01 meshes. Using a larger θc may offer improved computational972

efficiency, which would be particularly valuable when considering three-dimensional973

problems.974
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