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ORBITAL MIGRATION OF PROTOPLANETS: THE INERTIAL LIMIT
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ABSTRACT

The dynamical evolution of a disk and the orbital migration of an embedded protoplanet are examined. We
show how the migration of a protoplanet due to density waves torques can suppress the tendency for tidal
truncation of the disk. A critical mass is determined as a function of the disk properties that represents the
limiting mass that can sustain drift without stalling. This inertial limit is derived analytically, using a quasi-
steady state theory, and confirmed by numerical experiment. This result contradicts the claim of Lin and
Papaloizou that such a limit does not exist. Orbital mobility of objects due to density wave torques may have
played an important role in the early evolution of the solar system.

Subject headings: hydrodynamics — planets: formation — solar system: general

I. INTRODUCTION

We reexamine the mass limit proposed by Hourigan and
Ward (1984; hereafter Paper I) for the orbital drift of a plan-
etesimal driven by density wave interaction with the solar
nebula. Drift can be caused by differential Lindblad torques
arising from asymmetries in the nebula’s rotation and struc-
ture. Stalling occurs when the planetesimal opens a gap in the
disk. Since torques are proportional to the square of the per-
turber mass, m, the time scale for opening a gap is 7, oc m~2,
while the characteristic drift time is 74, oc m~ 1. This suggests
that there is a limiting mass, m;, below which a planetesimal
drifts too quickly to allow gap formation. This “inertial ” limit
was first calculated by Hourigan and Ward by employing an
impulse approximation of the density wave torque devised by
Lin and Papaloizou (1979).

This problem has subsequently been studied numerically by
Lin and Papaloizou (1986; hereafter LP86) using essentially
the same impulse model. They concluded that our proposed
limit did not exist, but their paper contains several misinterpre-
tations of our model. We demonstrate here that their work
largely reproduces ours, and that their case studies are consis-
tent with our predictions.

II. INERTIAL LIMIT

a) Equations of Motion
We start by reviewing the original derivation of the inertial
limit. Consider a planetesimal embedded in a Keplerian sheet.
The tidal effects on nearby portions of the disk result in a
mutual torque that can be approximated by integrating over a
torque density of the form.

dT ( G*m?a
T an v — ,
ar eV HQ — Q) —r,)”

where fis a constant of order unity. The drift rate of the plan-
etesimal is found by equating the rate of change of its angular
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momentum, d(mr,>Q,)/dt, to the total disk-integrated torque.
The implied radial velocity v, = dr,/dt, of the planetesimal is

2 — ﬂ dr
Y mr,Q, dr ’

The evolution of the disk due to the reaction torque is
described by Euler’s equation,

@
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where om = 2nordr is an annulus of the disk, [ = r?Q =
JGMgr is the specific angular momentum for Keplerian
rotation, and v represents the radial velocity of disk material
(e.g., Lynden-Bell and Pringle 1974). The differential angular
velocity in equation (1) is replaced by Q—Q,~
(r —r,)dQ/dr ~ —(3/2)Q(r — r,)/r to lowest order accuracy.
We treat r — r, = x and o(x) as the only rapidly varying quan-
tities and ignore changes in slow variables. When not differ-
enced, we set r =r, and Q = Q,. The planetesimal mass is
normalized to that of the primary y = m/M . The planetesi-
mal and fluid velocities become

D , _dT
Dr (oml) = nor*Qu or = o or,

v, ~ =2 fur’ ICI_(: le sgn (x) % dx , @
v ~ sgn (x) £ uer<:—C)4 , )

where the integration limits have been extended to 4+ co with
little error. The divergent behavior of equations (4) and (5) as
x| — 0 is not real. The tidal torque originates from strong
interaction with the disk at Lindblad resonances (e.g., Gold-
reich and Tremaine 1979). Resonances lying closer than a scale
height h ~ ¢/Q (c being the gas sound speed) to the protoplanet
have perturbation wavelengths shorter than h and a sup-
pressed response (i.e., the torque cutoff zone; Goldreich and
Tremain 1980). We introduce an ad hoc cutoff function f(x)
into dT/dr that equals unity for |x|=>h, but rapidly
approaches zero for | x| < h.
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b) Tidal Response of the Disk

The migrating planetesimal should create a disturbance in
the disk that tracks the planet. In a co-moving coordinate
system centered on the planetesimal, the fluid velocity is v =
v — v, and produces a radial flux F = 2znrov’. The equation of
continuity in the moving frame is

do 1 OF 0

ot 2mrox | ox (00 ©)
We seek a quasi-steady state for which do/dt ~ 0. This implies
F =~ constant. This constant can be evaluated upstream from
the perturber, out of range of its influence (v — 0) where F —
—2nrogv,, 0, being the unperturbed surface density. If ¢, =
constant, do/0t = 0 and the flux is unchanged from its unper-
turbed value. The perturbed density is found from

F = 2nrov' = 2nro(v — v,) = —27nro, v, . ™
This is an inviscid form of equation (13) given in Paper I. With
the aid of equation (5) we find

= Y% _

sgn (x) !
v, —v [1 —f(x) <x>:| ) ®)

where the dimensionless parameter, H, is defined by the com-

bination
1 4
H* = (v,,)(h) =A. ©)

Equation (8) describes the disk response to the protoplanet
induced tides and is in the form of a traveling wave, o(r — v, 1),
moving with the perturber. The disturbance becomes more
pronounced with increasing mass, y, but less pronounced with
increasing drift speed, v,. Hence, A is a measure of disturbance
strength. Lin and Papaloizou incorrectly interpreted equation
(8) as representing a “fixed,” “arbitrarily imposed” density
profile. In fact, its calculation is the key ingredient to determin-
ing the mass limit.

For convenience, our computations in Paper I employed a
cutoff function [f(x) = (x/h)*], which produced a constant
magnitude torque inside the cut-off zone with a sign reversal at
x =0. Lin and Papaloizou (LP86) chose an effective form
f(x) = |x/h|’ so that the torque varied linearly with x inside
the zone. Neither form matches the true cutoff function com-
puted numerically by Goldreich and Tremaine (1980), but
these differences are of minor importance to our purposes here.

Substitution of equation (8) into equation (4) allows us to
calculate the feedback contribution to the planetesimal drift
rate

Av,

2 3
oot* (r 3
- (" QH’G , 10
%Q%)lw (10)
where for the “ constant ” torque cutoff of Paper 1,2
2H 1. (H+1 1 (1
GE =gt zln(H = 1> T2 (H)

1 ( +\/2H+H2)

i\

4\/2
)

2 Here the sign convention for G,(H) is the opposite of that used in Paper I.

The feedback effect always opposes the drift because a density
maximum (minimum) of the disturbance always leads (trails)
the drifting protoplanet.

The primary driver of protoplanet migration is assumed to
be differential torques arising from global asymmetries in the
properties of the disk as first suggested by Goldreich and Tre-
maine (1980). For the simple torque model used in equation (4),
this requires a variation in the unperturbed density, o4(x). If
0o(x) varies with x, so does the unperturbed flux seen from the
moving frame. This introduces a time dependence to the
unperturbed density in this frame, do,/0t = v,00,/0x. If this is
used to estimate 0o/0t, equation (6) can be integrated and
equations (7) and (8) recovered with the exception that g,(x)
replaces o,. This is equivalent to again assuming the flux is
unchanged from its unperturbed value, which is not strictly
correct. An improvement to equation (8) can be found by using
its time derivative in equation (6) and again integrating. This
iterative procedure yields a correction of order ¢’/ ~ O(h/r)?
which can be ignored to the level of accuracy sought here.

¢) Drift Rates

Keeping linear terms in a Taylor expansion of o; ¢(x) =
oo(1 — kx/r), where k = —(r/a,)00(r)/0r is a constant of order
unity parameterizing the density gradient. Substituting o(x)/
(1 — v/v,) into equation (4) gives

v, = 2uf "°; (%)z(ra)[kHZGZ(H) - <2>H3GI(H)] (12)

where

HS 1. (H*+1 1. (1
GZ(H)=HS_l +Zln(H2_l>+§tan 1(?) (13)
Equation (9) can be used to eliminate H, yielding a single

relationship between v, and u. In practice, it is easier to elimi-
nate v, and obtain u(H),

3 2[k G,(H) <5> GI(H)](naoh2>
- H> \h) H Mg

— J(H, b, k)(”"" hz) (14)

@

and use equation (14) with either equation (9) or (12) to find its
associated drift rate. The behavior of y(H) is shown in Figure 1
for several values of k and h. The inverse function H(u) is
clearly double valued, and thus so is v,(u). More importantly,
there is a critical value, p,, *, above which solutions do not
exist. This sets the inertial limit, p; = p,, *(mooh*/My).
Objects of greater mass cannot sustain steady drift and will
stall, opening a gap in the disk. For nominal values used in
Paper I, k = 3/2, h/r = 0.1; p.,* ~ 0.2. In general it is a func-
tion of h and k—not a constant, as inferred in LP86.

The nature of p,,, *(h, k) is easy to display. We first expand
G,(H) and G,(H) as power series in 1/H (see Appendix).
Although the last four terms in G, contain contributions of
order 1/H" for all odd n, these mutually cancel through fifth
order, leaving G,(H)= 16/7(1/H)’ + O(1/H)** +.... The
second function can be expanded as G,(H) = 2(1/H)?
+ O(1/H)*° + ... . Hence to lowest order u* takes the form

4 8 1
WHH, K B ~ [k -5 <%> F] . (15)
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FIG. 1.—Perturber mass normalized to noh?® as a function of the disturbance parameter A = 1/H* and (k, h/r)

This approximation is quite good for positive (physic- fastest migrating mass; v,,, = 1.19v; occurs for u/u; = §. For

ally meaningful) u* and has a maximum at A, = 1/H,* =
(7/16) kh/r with a value u,,* = (7/8)k%h/r. (Note u_, * =
0.197 for k = 3/2, h/r = 0.1, in excellent agreement with Paper
I.) The inertial mass limit can thus be written

o MszﬁM) 1%
lul :umax (h’ k)( Mo ~ 8 r MO ( )

For p < p;, the drift velocity can be found from equation (9)
with the aid of equations (15) and (16),

_ r\(oor? (/)
v =2 “"(h) <Mo >('Q)[1 Ta —u/ui)”z]' an

The combination of terms preceding the last bracket gives the
drift speed v; for an object equal to the inertial mass. Equation
(17) is shown in Figure 2. There are two branches; an upper,
stable one and lower, unstable one. Interestingly, y; is not the
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F1G. 2—Drift velocity as a function of perturber mass. Upper branch is
stable, lower branch is unstable. Both branches terminate at the inertial limit.
The drift velocity in the absence of tidal disturbance of the disk is also shown.

U < 1, the stable branch is

2 2
vy & 2vi<i> = 4kfp<%) (‘;&; >(rQ) . (18)

Equation (18) would also be the velocity obtained in the
absence of a tidal feedback from the disk.

III. NUMERICAL MODELS

To compare our results with those of Lin and Papaloizou
we first bring our torque model into coincidence with theirs
by adopting their form of the cutoff function. This changes
the lead terms of G,(H) and G,(H) to H’In[(H* + 1)/
(H*—1)]—2H and H'°In[(H*+ 1)/(H* - 1)] — 2H®,
respectively. Both the direct driving and feedback components
of equation (12) are weakened, but the latter more so. This
turns out to raise the inertial limit slightly to pu; ~
(35/24)k*(h/r)no o h*/M . The drift velocity can again be found
from equation (17) after replacing the lead coefficient of 2 with
5/3.

Lin and Papaloizou parameterize their case studies through
the combination B = 3nX, R,?/m, where (R,, Z,) are reference
values related to local values of (r, a,) by r/R, = ¥ = 0.701 and
60/Zo = 1 — 1 for the models in question. Our critical mass is
derived in terms of local values. The logarithmic derivative
k = —(r/o)do/dr = r'(Zo/o5) =¥ /(1 —r) =234 and m; can
be written 1.46(r'/1 — r')(h/Ro)nZy h® in terms of their refer-
ence values. Our theory then predicts a critical value B,,;, =
2.05(1 — ') ~Y(Ro/h)* = 0.876(R,/h)* above which gap forma-
tion should be inhibited. Since their model also tracks the
possible viscous evolution of the disk, they introduce a second
parameter 4 = R,2Q, u?f/(3nv,), which is a measure of the
relative strength of tidal to viscous effects. Viscous diffusion
can inhibit gap development by a stationary protoplanet when
A < A ~ (h/Ry)*, (LP86, after correcting a typographical
error in that paper).

Table 1 lists their case studies. Since they varied h/R,, as well
as A and B, it is more revealing to compare A4/A., and
(B/B.i) ™' = p/m;, both of which should exceed unity for a gap
to form. These ratios are also listed in Table 1 and a map of
their distribution in parameter space is provided in Figure 3.
Although the outcomes of their experiments appear to agree
with expectations, it is clear that insufficient parameter space
was explored to test for the inertial limit. Case II, which they
claimed to be a decisive test is, in fact, almost on the boundary
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TABLE 1
SUMMARY OF LP 86 MODEL PARAMETERS

Model A B h/r Acrit Bcril A/Acril Bcril/B Gap?
I 1073 10° 001 10-¢ 8.8 x 10° 10.0 8.8 yes
Im............ 1072 106 001 10-¢ 8.8 x 10° 100 0.88 yes
Ix ........... 10-¢ 10° 001 10-¢ 8.8 x 10° 1.0 8.8 yes
Ma.......... 10°¢ 10° 0.02 8 x 1073 1.1 x 10° 0.125 1.1 no
IV ... 1073 10° 0.02 8x107° 1.1 x 10° 1.25 1.1 yes
IVa.......... 10°° 108 0.02 8x107° 1.1 x 10° 1.25 0.11 no

of the region of gap formation. This confusion stems from their
uncritical use of u,,,,* = 0.2, a value appropriate for our model
disk in Paper I but not for theirs. The proper value for case I is
Uea¥ = 0.114 (see below). Gap formation was inhibited in two
cases; IIla which is well within the regime where diffusion
should overpower the tidal forces, and case IVa where the mass
of the perturber does lie below the inertial limit, but diffusion,
although marginal, may still contribute. Significantly, case
IV—with the same value of 4/A,;, as IVa, but a mass above
the inertial limit— exhibits gap formation, implying that it is,
indeed, this trait that accounts for their dissimilar outcomes.
Unfortunately, less equivocal examples were not provided by
Lin and Papaloizou. We remedy that deficiency below.

To isolate the feature of interest, the disk is assumed to be
inviscid for which 4 — co. Thus only the migration of the pro-
toplanet can prevent the formation of a gap. In a fixed coordi-
nate frame, the continuity equation reads

do _ fu*Qr’ o [af(x —Xp)
ox | (x —x,)*

sgn (x — xp):l s
(19)

where o = a(x, t) is time dependent, x measures positions in the
disk and x,(t) the location of the perturber—both taken with
respect to the perturber’s initial position. Slowly changing vari-
ables are again treated as constant. Equation (19) can be cast

—%(ov)=—

ot 7t

i |
7

AAcrit

FiG. 3.—Distribution of case studies in LP86 compared to gap criteria.
Open circles indicate development of a gap in the disk; closed circles denote
cases where gap is inhibited.

into a convenient nondimensional form by normalizing dis-
tances to the scale height, surface densities to the value at the
starting position of the perturber, o, o = 6(0, 0), and the time
variable to the interval needed for a stationary object to clear a
gap of width h; 7, = (n/fu*Q)(h/r)* (see Paper I). This pro-
cedure yields,

do’ Jd |of(x'—x,)
— A — —— E a — r
ot' ~ ox’ [ (xl _ xp/)4 sgn (x xp) s (20)

where primes denote normalized quantities. Similarly, equa-
tion (4) can be written in the nondimensional form,

dx,) 2 (r\ [ of(x' —x,)
el R 9JE T 2p) " x Ndx' 21
Up dt/ 'u* (h)J\ (x/_xp/)4 Sgn (x xp) X ( )

where u* = m/na, o h*. In order to facilitate comparison with
LP86, the linear form of the cut-off function is used: ie.,
f(&x'—x,)=|x"—x,|> for |x'—x,| <1, otherwise unity.
The initial density profile is ¢’ = 1 — k(h/r)x’ where h/r is the
ratio of the scale height to the heliocentric position of the
perturber. Since r = 'R, in LP86, their choice of h/R, = 0.01
and ' = 0.701 is equivalent to setting h/r = (h/R)/r' = 0.0143.
This, together with k = /(1 — r') = 2.34 establishes the critical
value y,,,. * = 0.114 mentioned above.

Equations (20) and (21) were integrated by a finite difference
scheme for several values of k, h/r, and u*. Table 2 indicates
whether a gap develops in each case. The results are in excel-
lent agreement with theoretical predictions. Because of the
starting density profile, all cases exhibit a transitory migration
phase during which the disk adjusts to the tidal torque. (It is
not at all obvious that this is a reasonable starting condition.
The perturber is not “turned on” suddenly, but acquires its
mass through accretion and therefore has a history of inter-
action with the disk. Again, our use of a linear profile is to

TABLE 2
GAP FORMATION

k hyr Hinar™ u* W lmae*  Gap?

234......... 0.0143 0.114 0.091 0.80 no
0.103 0.90 no
0.114 1.00 no
0.125 1.10 yes
0.137 1.20 yes

234......... 0.0285 0.228 0.228 1.00 no
0.251 1.10 yes

1.00......... 0.05 0.0729 0.060 0.82 no
0.070 0.96 no
0.080 1.10 yes
0.090 1.23 yes

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1989ApJ...347..490W&amp;db_key=AST

494 WARD AND HOURIGAN Vol. 347
1.0 T T
0.8 Ve e
) 08
S 0.6 09 B
~>O
> 1.0
> 041 -
1.1
0.2 —
1.2
0 | |
0 .05 .10 .15 .20
t/7'gap

FiG. 4—Velocity as a function of time found by numerical integration for (k, h/r) = (2.34, 0.0143) models. Curves are labeled by values of u*/u,..* where
Hmax* = 0.114. Dotted line indicates quasi-steady state velocity curve for u*/u_,, * = 0.8. Velocities have been normalized to zero feedback values.

facilitate comparison with LP86.) The initial drift velocity can
be found from integrating equation (21) at ¢’ = 0,

. 10 k
and simply represents the velocity in the absence of tidal feed-
back (eq. [18]) for the linear cutoff model. As the evolution
proceeds, the velocity quickly decays from this starting value.
Objects large enough to open a gap eventually become
trapped, with their velocities decaying toward zero. Objects
escaping this fate should have velocity curves that approach
the quasi-steady state curve predicted in equation (17),

U, — l Ul H/ﬂl
2701 = — )]

Figure 4 shows the velocity curves for the models most closely
resembling those of Lin and Papaloizou, i.., the first entries in
Table 2. With these models, the effective logarithmic derivative
koco™! and p; oc k%6 oc 6 1. Hence, the inertial mass rises
slightly as the perturber migrates outward; p(x')— u{0)/
[1 — k(h/r)x]. This causes a slow increase in v'/v,’ from equa-
tion (23). The steady state velocity curve for u* = 0.80 is shown
in Figure 4 as an example. After a transitory adjustment
period, the velocity approaches the steady state curve and
follows it closely. This was a general feature of all cases con-
sidered where gap formation did not occur. Interestingly, we
did not find gap formation for u*/u,,..* = 0.9, in contrast to the

22

23)

results reported in LP86 (case II, equivalent to u*/u,, * =
0.88). We cannot explain this discrepancy, but do find the close
agreement between our analytic and numerical work reassur-
ing. Figure 5 compares the surface density of the disk at t =
0.17,,, for masses below, at, and above the critical. The
“smoothing” of the global gradient at the critical mass is
clearly illustrated, while, for the slightly larger mass, gap devel-
opment is well underway.

IV. DISCUSSION

It is mostly the interpretation, not the calculations, in LP86
with which we take exception. Indeed, their results are gener-
ally consistent with our model’s predictions when the scaling
factor u*(h, k) is properly determined for their study condi-
tions. Their assertion that we adopted a fixed surface density
profile that “... inadequately describes the disk response to the
protoplanet’s tides ” is based on an unfortunate misinterpreta-
tion of our procedure. We, perhaps, bear some responsibility
for this, since our introductory remarks motivating the calcu-
lations in Paper I (and similar to those made in the intro-
duction to this paper), compared planetesimal drift times to the
time to clear a gap, which is typically O(r/h) longer than
required to smooth out a weak density gradient. This distinc-
tion was stressed in LP86, and we concur. Indeed, our calcu-
lations do correctly use the tidal disturbance of the disk to
evaluate its feedback effect. Qualitatively, this effect is to
induce a local density gradient that opposes and partially com-
pensates for the global one. The degree of compensation

.................... ! I I ‘ I '
10 T — i
i M"\M‘“‘"""""‘"‘""'"""""'x.! ..... ,U* =0 097 -

QoL T T .
ST e .
<M R 1
; T p*=0.114 -
[S) 1.0 e AT — -
T Vo S ]
o8k T “* =0.137 -
0.6 L A S S
x'=x/h

F1G. 5—Surface density profiles at ¢’ = t/t,,, = 0.1 for (k, h/r) = (2.34, 0.0143) models. Arrow indicates position of perturber; distance is measured in scale
heights. Top curve shows sustained migration without gap development for a mass less than the inertial limit. Middle curve displays nearly complete compensation
of the global gradient at the limiting mass (i,,,* = 0.114). For a slightly larger object (bottom curve) migration stalls and a gap quickly opens.
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increases with mass, becoming essentially complete at the iner-
tial limit (Fig. 5). Again, this is quite consistent with the behav-
ior reported in LP86 and with that found in our own numerical
work. Accordingly, we find no basis for their conclusion that ...
there is not an inertial limit as proposed by Hourigan and W ard
(1984).”

Although it is relatively easy to establish the theoretical exis-
tence of an inertial limit, it is, of course, more problematical
whether it actually operated in the early solar system. For
migration to dominate viscous effects, u; must exceed pu,, a
second critical mass associated with viscous diffusion (Paper I).
This sets a limit on the viscosity of, v/(c2Q 1) =a <
(h/r)or*/M)? ~ ©(107° — 1077). This is considerably less
than turbulent viscosity estimate of o ~ 0(10~#) for iron grain
opacities made recently by Cabot et al. (1987). However, this
value is predicated on the presence of abundant fine-grained
material to provide the requisite opacity. In the later stages of
planetary accretion, it remains unclear whether there will be
sufficient opacity to sustain turbulent convection (e.g., Wei-
denschilling 1984).

Finally we should point out that the torque model represent-
ed by equation (1) is a considerable oversimplification. Since
our main objective has been to reconcile the numerical experi-
ments of Lin and Papaloizou with our own earlier analysis, we
have employed the same torque model originally used in both

ORBITAL MIGRATION OF PROTOPLANETS 495

studies. More recent work (Ward 1986) indicates that in a
Keplerian disk, a differential torque can arise from asym-
metries in resonance locations alone. This net torque is nega-
tive, resulting in orbital decay, because outer Lindblad
resonances lie slightly closer to the perturber. In addition, a
pressure gradient due to density or temperature gradients can
also influence torque estimates by shifting resonance positions.
Finally, an important assumption underlying both our work
and that of Lin and Papaloizou is that density waves damp
locally. If, in fact, density waves propagate out of the local zone
(> h), gap formation will be further inhibited and the inertial
limit larger (Ward, 1986). These features should eventually be
incorporated into an improved model of protoplanet migra-
tion, but we defer such a task to a later publication.

Unfortunately, we missed the 1986 paper by Lin and Papa-
loizou when it was published, and remained unaware of their
paper until late 1987, when a colleague brought it to our atten-
tion. For this, we wish to express our appreciation to C. F.
Yoder. W. R. W. wishes to also thank the Department of
Physics, Harvey Mudd College, for their hospitality during a
portion of this research project. This research was supported
by NASA under NBAS-100 with the Jet Propulsion Labor-
atory, California Institute of Technology.

APPENDIX

The expansion of the function G,(H) is as follows:
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